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Abstract—Communication link failure is common in any
network. In Software Defined Network (SDN), protection-based
recovery scheme reduces the failure recovery delay by installing
alternative routes at the data plane switches. We can deploy
Fast Failure Group (FFG) of OpenFlow protocol if a switch
has an alternative path towards the destination; otherwise, the
switch can use crankback approach to send the affected traffic
towards the traversed route to find an alternative path. These
existing recovery schemes force every packet to traverse a chain
of matching tables even in the absence of a link failure, which
impacts packet processing time and end-to-end delay. In this
paper, we propose a packet rerouting architecture, called SD-
FAST, that invokes recovery scheme only after facing failure and
reduces both the packet processing and crankback backtracking
time. We evaluate SD-FAST in Mininet, considering real and
simulated traffic on real network topologies. The evaluation
results confirm that SD-FAST can reduce around 73% crankback
backtracking time and 64% delay compared to its counterparts.

I. INTRODUCTION

Software-Defined Networking (SDN) [1], [2] is a new
approach to designing networks, where network control logic
(control plane) is separated from the network forwarding
elements (data plane). The control plane translates high-level
network policies to network configuration rules and installs
those rules to the data plane elements using a protocol like
OpenFlow [3]. SDN-based designs are widely adopted in data
centers, enterprise networks, or wide area networks, where
communication link failure is common. A link failure can
occur as a result of damage on a network interface, data plane
element, or cable. This failure, however, disrupts ongoing
services [4].

The link failure recovery schemes in SDN include restora-
tion [5] and protection [6]. In the restoration approach, a
switch contacts the controller after detecting a failure to get
a restoration path. In the case of the protection scheme, the
controller pre-installs flow rules at each switch to enable
local failure recovery. OpenFlow protocol defines Fast Failover
Group (FFG) [7] to allow a switch rerouting the affected
traffic without contacting the controller. The protection scheme
thus reduces the communication delay between the data and
control plane to bound the recovery time to 50 ms [8]. A
switch can monitor the status of each port using Bidirectional
Forwarding Detection (BFD) [9]. BFD exchanges periodic
control messages among the connected ports and declares
a link failure after missing the response of a configurable
number of consecutive control packets, i.e., it provides the
liveliness of a port.

In FFG-based recovery, a fast kernel data-path table main-
tains the packet matching rules and guides the packet to a
group table to get action. However, the FFG-based solution
demands at least one alternative route at each switch to locally
recover from a link failure. In practice, many topologies may
not have such alternative routes. In such topologies, we can de-
ploy crankback (CB) approach [10]. In crankback, if a switch
does not have any alternative route towards a destination, it
sends back the affected traffic towards the source. In that case,
every affected packet backtracks towards the source to find an
alternative route, which introduces delay. Fangye et al. [11]
suggest combining crackback with the restoration approach
to reduce that backtracking delay, we name their approach
crankback with controller (CBC).

However, the major limitation of FFG and crankback is
that every packet has to go through the group or state table.
Specifically, a packet from a flow that does not experience
any failure needs to be matched with a chain of tables.
Matching each packet with additional state tables can incur
delay, especially in the case of a long route or high load.
Furthermore, in the case of crankback, a switch cannot locally
terminate such backtracking as it does not have any knowledge
about a remote failure. Thus, it is necessary to have a failure
recovery scheme, where only the traffic facing a link failure
traverses the group or state table of FFG and crankback,
respectively.

Contribution: In this paper, we introduce a fast packet
reroute scheme in the presence of a link failure, called SD-
FAST, that acts only on the traffic facing failure and enables
regular traffic following conventional flow tables. The pro-
posed solution furthermore terminates crankback backtracking
without controller’s intervention. SD-FAST is implemented at
each switch in the data plane, where its link status monitoring
module uses BFD protocol to detect a link status. In the case
of a link failure, SD-FAST updates the affected flow rules
using the backup rules from a table maintained at the OVSDB.
Note that this backup table is only accessed in the case of a
link failure while regular packets follow the conventional flow
tables. A switch also updates the state of the affected packets
to terminate the backtrack chaining.

We evaluate the performance of SD-FAST in Mininet [12]
using Open vSwitch (OVS) [13] and a Ryu controller [14]. We
consider real network topologies USNET [7] and Darkstrand
[15] where hosts exchange both the real and simulated iPerf
[16] or ICMP [17] traffic. Our evaluation results indicate that
SD-FAST can reduce 73% crankback backtracking delay com-
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pared to CBC and 64% average end-to-end delay compared to
the CB approach.

Organization: The rest of the paper is organized as fol-
lows. We compare and contrast SD-FAST to relevant research
work in Section II. In the following section, we present
the design and architecture of SD-FAST. Section IV depicts
the evaluation setup following the discussions on the results.
We conclude the paper with future research directions in
Section VI.

II. RELATED WORK

In this section, we compare and contrast existing relevant
literature with SD-FAST. We categorize existing related work
into FFG, CB, or source routing based techniques.
Recovery using FFG: The designs in [18], [19], [20], [21],
[22], [23] deploy FFG to implement local failure recovery.
Ghannami et al. [18] define a set of pre-computed rooted trees
as the primary and backup routes, where FFG is used at each
node to redirect the traffic to the backup tree. Cheng et al.
[20] define a weighted capacity matrix to avoid congestion
while redirecting the traffic to a backup route using FFG. A
similar congestion avoidance scheme is proposed in [19]. Xie
et al. use multi-stage pipeline processing for load balancing
while recovering from a link failure. Revive [21] efficiently
distributes TCAM usage between primary and backup routes
of a flow. The solutions that rely on FFG require a network
topology having alternative routes between every pair of
nodes. Furthermore, regular traffic needs to travel through the
two-stage table matching that incurs a delay. SD-FAST does
not have any requirement on the routing topology, and fail-free
regular traffic follows only the conventional flow tables.
Recovery using crankback: The work in [10], [24] uses
the crankback technique to provide failure recovery when a
topology does not offer an alternative route between every pair
of nodes. Detour [10] uses Openstate [25] and considers link
capacity while construct the backup path to avoid congestion.
SPIDER [24] avoids the dependency on the controller using
a stateful data plane and constructs recovery routes using
crankback. The main pitfall of crankback-based approach is
its packet-by-packet backtracking, which does not stop until
the failed link is restored. Furthermore, packets in crankback
need to traverse a multi-stage chain of tables. SD-FAST stops
the crankback backtracking as soon as it finds an alternative
route.
Recovery using source routing: Source routing based tech-
niques are proposed in [26], [27], [28], where a packet carries
the routing information in its header. Stephens et al. [27]
deploy source routing with the flow rules compression to
achieve both the link failure recovery and efficient TCAM
usage. However, the added header bits require special packet
processing and may introduce packet processing delay. SD-
FAST does not add any routing information in regular packets
but appends a tag in the traffic facing a link failure. It can also
learn about a distant link failure to terminate the crankback
backtracking.

III. ARCHITECTURE AND DESIGN

In this section, we present the SD-FAST architecture and
operation. The architecture is depicted in Figure 1, where
different network functions are decomposed into modules. The
route planner and other network application modules reside in
the management plane and contact the controller through the
northbound API. The main functional modules in the controller
include topology control, route configuration, and statistic
collection. The Ryu controller uses OpenFlow 1.3 to install
flow rules in the OVS switches. Remaining functional modules
of SD-FAST reside in the data plane, which include link and
packet status monitor, rule changer, and rule grabber. In the
following, we present the design and operation of different
functional modules.

A. Management and control plane modules

The topology control module gets the network state infor-
mation from the statistic collection module that periodically
gathers the network state information from the data plane
elements. Furthermore, the data plane elements send any
critical change in the local topology (e.g., link failure) to the
statistic collection module. The topology control module use
the collected state information to construct and maintain the
network topology. We use the topology construction algorithm
presented in [29] to generate the routing topologies (a sub-
graph of the physical topology). The routes can be constructed
using the shortest path tree (SPT) or minimum spanning tree
(MST) depending on the applications demand.

Fig. 1. The Architecture of SD-FAST.

Given a network topology, G(V,E), where V and E are
the set of nodes and vertices, respectively, the route planner
module constructs two routes between every pair of nodes.



Depending on the topology, these created routes will be edge-
disjoint, or they will share edges. For instance, every node in
USNET topology has at least two paths to reach other nodes,
which is not the case in Darkstarnd topology. The constructed
routes in the former topology will be edge-disjoint, but they
will share edges in the latter topology.

The route configuration module uses the constructed routing
topology to determine the output ports for a given source-
destination pair, (s,d). It starts with the primary route between
(s,d) and recursively sets two output ports (primary and
backup) at every node until it reaches the destination. Note
that intermediate nodes between (s,d) may or may not have
an alternative route to the destination depending on the given
topology. In the case of an available alternative path, we can
deploy FFG as well as SD-FAST; otherwise, we have to use
CB, CBC, or SD-FAST.

After determining the required pair of output ports, the route
configuration module installs only the primary route (port) in
the flow table at every switch between (s,d). The backup
port is kept in a backup table inside OVSDB. In the case
of a link failure, a switch fetches this backup port to replace
the primary one in the flow table. Thus, unlike FFG and CB,
each packet in SD-FAST does not need to traverse a chain of
tables. Furthermore, SD-FAST always uses the flow table from
the kernel-space and maintains the backup table in the user-
space. This decomposition helps SD-FAST achieving better
processing time compared to FFG and CB.

B. Data plane modules

The link-status monitor module uses the BFD protocol to
monitor the link status. Recall that BFD exchanges control
packets at a regular interval between adjacent links and de-
clares a link failure after missing a certain number of control
packets. The packet-status monitor module checks the status
of a packet, where a packet can be in a status of regular,
crankback, or recovered. A packet facing no failure has the
regular status, whereas a packet facing a failure has either
crankback or recovered status. While a packet crankbacks its
associated status is crankback, which changes to the recovered
status as soon as the packet finds an alternative route. The
recovered status is used at the destination to update the reverse-
path for a given source-destination pair.

In Figure 2, PKT , PKTCB and PKTR represents regular,
crankback, and recovered status, respectively. For a given
source-destination pair (A,E), if the link between D and E
along the primary route fails, SD-FAST changes the status
of that packet, PKT , at D from ”regular” to ”crankback”.
Once that packet, PKTCB, reaches B, its status changes to
”recovered”.

When a switch detects a link failure, it needs to update the
route and the packet status. The rule grabber module of SD-
FAST accesses the backup table in the user-space for relevant
backup routes. We use the destination IP address along with
the source and destination port to find appropriate backup rules
for the affected traffic. The rule changer module replaces the
current forwarding rules with the grabbed backup ones. The

Fig. 2. Different types of packet status in SD-FAST.

affected packet then follows the new route along with the
updated packet status (crankback or recovered). The operation
of the rule changer module is presented in Algorithm 1.

Algorithm 1 Rule Changer Algorithm
Input:

Selected Backup Rules: rb where, rb ∈ R
Destination Status: dst

Output:
Rule Change Status: sr

1: for each rule ∈ rb do
2: if !dst then
3: if in port(rule)! = out port(rule) then
4: pushRcInst(rule)
5: else
6: pushCbInst(rule)
7: end if
8: end if
9: push rule to flow table

10: end for
11: update sr

We use Algorithm 1 to update affected flow rules with the
chosen backup rules, rb ⊆ R, where R is the set of backup
rules. For each rule, we first check if the associated packet, P,
reached the destination. If a packet reaches the destination,
we update the associated reverse path towards the source.
Otherwise, we first change the packet status (crankback or
recovered), then update corresponding affected flow rules in
the primary table using the backup ones.

We need to search both in the primary and the backup
flow tables to find and update the affected flow rules with the
backup rules. Suppose there are S and R rules in the primary
and backup tables, respectively. A single link failure can affect
multiple flows. Suppose there are f flows that are affected by
a link failure. Then, the time complexity of Algorithm 1 is
O( f logR).

C. Local Packet Rerouting

In SD-FAST, when a fail-free packet comes to an interface,
it uses the flow rules from the primary flow table. However, we
deploy Algorithm 2 to locally reroute packets in the presence
of a link failure. The algorithm uses the incoming packet P and
link status Ls to detect a remote or local failure, respectively.



In the case of local failure (one of the links of a switch), the
algorithm executes steps 4 to 6. In particular, rule grabber
and rule changer of that switch update (using Algorithm 1)
the affected flow rules in the primary table using the backup
rules.

In the case of a remote failure, the algorithm 2 implements
steps 7 to 13, where a switch first checks the packet status, then
executes packet forwarding actions following Algorithm 1.
Finally, the switch updates the packet status before releasing it
to the output port. This status update depends on whether the
packet reaches the destination or not. In the former case, the
algorithm updates the reverse path of that packet. However,
if the packet is still in transit, the algorithm uses the current
status. If the state is ”crankback,” it is updated to crankback
or recovered; otherwise, the status is recovered.

Algorithm 2 Packet Rerouting Algorithm
Input:

Packet: P
Link Status: Ls

Output:
Rule Change Status: S

1: S← 0
2: dst← 0
3: IP← Extract(P)
4: if isDown(Ls) and isEmpty(S[IP]) then
5: R← RuleGrabber()
6: S[IP]← RuleChanger(R,dst)
7: else if (isCbtag(P) or isRctag(P)) and isEmpty(S[IP])

then
8: R← RuleGrabber()
9: if isCbtag(P) then

10: S[IP]← RuleChanger(R,dst)
11: else if isRctag(P) and isDest(P) then
12: dst← 1
13: S[IP]← RuleChanger(R,dst)
14: end if
15: end if

IV. EVALUATION SETUP

This section presents the emulation environment that we
use to evaluate SD-FAST. We use Mininet 2.3, Open vSwitch
2.9.1, and a Ryu controller 4.30 on a server consisting of
2.66GHz 12 core CPU, 44GB RAM, and Ubuntu 16.04.3 LTS
operating system. The data plane elements, which are OVS
switches, communicate to the Ryu controller using OpenFlow
1.3 protocol. The BFD control packet exchange interval is 5
ms, and a three consecutive failed response declares a link
failure.

Table I summarizes different parameters that we use to eval-
uate SD-FAST. We choose USNET topology as it offers edge-
disjoint routes among nodes. On the other hand, Darkstrand
has crankback routes. We evaluate the performance of FFG,
SD-FAST, CB, and CBC over these two topologies, where
red-colored nodes are the source-destination pairs. We can

Fig. 3. Twenty four node USNET topology.

Fig. 4. Twenty eight node Darkstrand topology.

generate a different possible combination out of these pairs.
Thus, we consider sixty source-destination pairs to exchange
traffic, where we randomly select twelve pairs at a time to
enable their concurrent communication. We repeat the process
five times to cover all sixty pairs, where each time a unique
set of twelve pairs are chosen.

As part of the packet generation, we use both the real and
iPerf (UDP) traffic. In the case of real traffic, we exchange an
mp4 file among the source-destination pairs. Otherwise, we
use ICMP ping and iPerf to measure the delay and throughput,
respectively. In the case of real traffic, data size varies from
200MB to 350MB. On the other hand, the source-destination
pairs exchange 3 MB iPerf or ICMP traffic, where each of
the twelve pairs exchanges traffic for 10 minutes. Finally,
we concurrently fail one link along the primary paths of the
chosen twelve pairs.

TABLE I
SUMMARY OF DIFFERENT EVALUATION PARAMETERS.

Parameters Description

Topology 24 node USNET (Figure 3) and 28 node
Darkstrand (Figure 4)

Traffic generation ICMP ping, iPerf based UDP, wget to transfer
mp4 file.

Source-destination
pairs

60 source-destination pairs, where always
twelve pairs communicate concurrently.

Link failure One link failure in each of the
twelve primary paths.

We measure the average throughput, end-to-end delay, and
backtracking time according to the definitions presented in
Table II.



TABLE II
THE DEFINITION OF METRICS.

Name Definitioin Unit
End-to-End
delay

The round trip time of a packet
or file transfer. ms, sec

Throughput The rate of successfully delivered
traffic. Mbps, MBps

Backtracking
time

The time difference between a link
failure and crankback termination,
i.e., the recovery time .

ms

V. DISCUSSION ON RESULTS

In this section, we discuss the evaluation results of SD-
FAST. We furthermore compare its performance with FFG,
CBC, and CB. We categorize the results into the impact of
topology, link failure, backtracking, and real traffic.
The impact of topology: Figure 5 presents the average end-
to-end delay in the presence of link failures in USNET and
Darkstrand topologies. Each node in USNET topology has
at least one alternative route towards any other nodes, which
helps a packet to recover from a link failure quickly. In the
absence of backup paths at each node, a packet in Darkstrand
topology follows crankback and experiences backtracking de-
lay. Thus, all four schemes experience a significantly higher
delay in Darkstrand compared to USNET topology. In particu-
lar, CB has the worst performance, while SD-FAST is the best
scheme. Note that FFG requires alternative routes towards the
destination to recover from a failure; thus, its performance is
absent in Darkstrand.

If we want to reduce the delay over various type of
topologies, SD-FAST is the right choice as it minimizes the
delay compared to the other schemes. However, in the case of
moderate size iPerf or ICMP traffic in USNET topology over
an average route length, the improvement is not significant
(Figure 5). This performance tells that SD-FAST is more
effective in the topology like Darkstrand with a large number
of crankback routes. In particular, SD-FAST improves around
54% and 27% average delay compared to CB and CBC,
respectively. We suspect that this performance enhancement
of SD-FAST is because of its recovery approach using the
packet status and quick backtracking termination.

Fig. 5. The average end-to-end delay in USNET and Darkstrand topology.

We present the average throughput in Figure 6. We observe
an expected performance trend similar to that of the delay.
In particular, the performance difference of different schemes
is more prominent in Darkstrand topology, where SD-FAST
outperforms others.

Fig. 6. The average throughput in USNET and Darkstrand topology.

The impact of link failure: We measure the impact of a
link failure in Darkstrand topology as it has a large number of
crankback routes, which has an impact on the four schemes.
In this evaluation, we vary the percentage of the link failure,
where the primary routes of the chosen pairs get disconnected,
i.e., the affected traffic has to follow backup routes. However,
we make sure that the topology is still connected to carry the
ongoing traffic. Figure 7 and 8 present the average delay and
throughput, respectively.

Fig. 7. The average end-to-end delay in the presence of link failure.

SD-FAST reduces around 60% and 28% average end-to-
end delay while improves around 57% and 27% average
throughput compared to CB and CBC, respectively. The link
failure forces the traffic to follow a longer backup route and
enables crankback route. Both CB and CBC suffer from the
backtracking and chain of table matching delay, which is not
the case in SD-FAST. The delay increases with the increasing
percentage of the link failure in all three schemes, where CB
has the worst performance. Note that FFG requires backup
routes towards (no backtracking) the destination to recover
from a failure; thus, its performance is not available for
Darkstrand.



Fig. 8. The average Throughput in the presence of link failure.

The convergence of crankbacking: We consider Darkstrand
topology to evaluate the backtracking convergence time. In
particular, we measure how long it takes for a packet to find
an alternative route after detecting a link failure so that the
crankbacking process terminates. We furthermore consider 20
percentage of the link failure, which is the largest one before
the topology gets disconnected. Note that the crankbacking
process continuously runs at the data plane switches in the
case of CB. Thus, in this set of evaluations, we compare SD-
FAST with CBC. The average convergence time is presented
in Figure 9.

Fig. 9. The average convergence time of crankbacking in Darkstrand topology.

SD-FAST reduces 73% of the backtracking delay compared
to CBC. CBC is a reactive approach, where a switch reports
any link failure to the controller to update all affected routes.
However, the traffic in transit between the source and failed
link deploys crankback. The controller communication delay
along with the chain of tables matching introduce high con-
vergence time on CBC, which is not the case in SD-FAST.
The impact of real traffic: In the above evaluation, we
observe that SD-FAST is more effective in Darkstrand than in
USNET, especially over long routes. However, we suspect that
the data size also has an impact on the performance of SD-
FAST, CB, and CBC. In particular, SD-FAST avoids the chain
of table matching, especially for the regular fail-free traffic. In
this evaluation, we transfer a large size MP4 file to the chosen
destinations to further illustrate the benefit of SD-FAST. The

average delay and throughput of three recovery schemes are
presented in Figure 10.

(a) Average Delay

(b) Average Throughput

Fig. 10. The average end-to-end delay and throughput in Darkstrand topology.

The evaluation results indicate that SD-FAST is around 64%
better compared to CB in terms of the average end-to-end
delay. The performance improvement of SD-FAST comes from
its reduced table matching approach for the regular and failed
traffic. In the case of throughput, we observe a performance
trend similar to that of the delay. The throughput of CB is
around 62% lower than that of SD-FAST. The performance of
CBC is in between SD-FAST and CB. Both CB and CBC have
a chain of table matching even for fail-free traffic, which has
an impact on the performance while transferring high volume
data over long routes.

VI. CONCLUSIONS

In this paper, we have introduced SD-FAST, a local on-
demand packet rerouting architecture. It has removed the need
for a chain of tables matching while forwarding regular and
failed traffic. The evaluation results have confirmed that the
chain of table processing has an impact on the performance
of FFG, CB, and CBC, where SD-FAST is a winner to improve
the average delay and throughput. In particular, SD-FAST
has reduced 64% average end-to-end delay compared to CB
and 73% average backtracking convergence delay compared
to CBC. Overall, SD-FAST has significantly improved the
substantial data transfer time over both the fail-free and faulty
networks compared to its counterparts. As part of our future
work, we plan to integrate SD-FAST modules in the OVS core
and measure its performance in a real testbed.
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