
SafeGuard: Congestion and Memory-aware Failure
Recovery in SD-WAN

Meysam Shojaee
Faculty of Computer Science

Dalhousie University
meysam.shojaee@dal.ca

Miguel Neves
Institute of Informatics

UFRGS
mcneves@inf.ufrgs.br

Israat Haque
Faculty of Computer Science

Dalhousie University
israat@dal.ca

Abstract—In software-defined WANs (SD-WAN), link failure
can lead to congestion and packet loss, hence degrading applica-
tion performance. State-of-the-art traffic engineering approaches
can speed up failure recovery by proactively installing backup
tunnels and redirecting affected traffic immediately in the data
plane, which reduces the burden on the network controller.
However, these approaches either lead to bandwidth waste because
of reserved link capacity or impose restrictions on network
topologies, e.g., the existence of link-disjoint routes or large
switch memory resources. In this paper, we propose SafeGuard, a
software-defined proactive recovery system that improves band-
width allocation and switch-memory usage while working on any
connected network. We formulate the failure recovery problem
as a multi-objective MILP optimization problem for all possible
single link failures, the most common case in current WANs
as temporally-coinciding failures are rare. We then develop a
heuristic to efficiently compute backup routes as the problem is
NP-Hard. We implemented a prototype of SafeGuard using the
Ryu SDN controller and extensively evaluate it in Mininet over
two real topologies, Google B4 and ATT. Our results show that
SafeGuard can reduce the number of congested links by up to
50% compared to the state-of-the-art failure recovery scheme.

Index Terms—Software-defined networking, SD-WAN, failure
recovery, multi-objective optimization.

I. INTRODUCTION

Software-Defined Networking (SDN) [1], [2] enables net-
work programmability that leads to flexible network config-
uration and rapid innovation. In SDN, failures can occur in
the management, control, or data plane [3]. In this work, we
focus on data-plane failures, specifically communication link
ones. An extensive study on Microsoft’s WAN reveals that
the probability of having a single link failure in a five-minute
interval is above 20%, which has a notable impact on link
utilization [4].

One of the most common ways to recover from failures
in SD-WANs is through Traffic Engineering (TE). In partic-
ular, SDNs leverage dynamic route selection and bandwidth
allocation to offer a balance between network availability
and efficient resource (i.e., link capacity and switch memory)
utilization. There are mainly two failure recovery approaches in
SDN: reactive and proactive [3]. In the reactive approach, the
controller responds to a link failure upon receiving a notifica-
tion from the data plane. Thus, the communication between the
affected switches and the network controller, the computation

of a new route, and the device configuration introduce overhead
and delay to recover from a failure [5]. On the other hand, the
proactive recovery scheme eliminates such overhead and delays
by installing backup routes at switches to locally recover from
a failure without the controller’s intervention. Nevertheless,
proactive approaches usually require extra switch memory
space to store backup routes, which can lead to contention on
this scarce resource.

Previous work on the state-of-the-art has adopted variations
of proactive recovery schemes to route traffic with reduced
congestion in the presence of failures. For example, Forward
Fault Correction (FFC) [6] is resilient up to k concurrent
failures at the cost of keeping some spare capacity. Traffic is
then rerouted through spare links in case of a failure. Sentinel
[7], on the other hand, does not require any spare capacity at
all. Instead, it installs backup routes and solves an ILP model to
reroute traffic while minimizing the maximum link utilization.
However, these solutions have two important drawbacks: i)
they require special topologies (e.g., containing link-disjoint
paths) to work properly; and ii) they miss incorporating switch
memory constraints while selecting routes and assigning traffic
rates to them. Ultimately, exhausted switch memory can lead
to packet drops and increase table lookup and update times [8].

In this paper, we propose a novel software-defined failure
recovery system for SD-WANs. Our system, called SafeGuard,
takes into account both link and switch memory constraints for
proactively allocating backup routes. We formulate the failure
recovery problem as a multi-objective MILP optimization prob-
lem that selects routes (either primary or backup) and assigns
rates to them for all possible single link failures (the most
common case in WANs [7]). Unlike prior work, the proposed
model is not confined to any specific network topology and can
encompass different route selection algorithms (e.g., ECMP, k-
shortest, or link-disjoint paths) while minimizing both route
length and link utilization. As our model turns out to be NP-
hard, we develop a heuristic that greedily selects routes and
assigns rates to them. Our heuristic is enhanced to find a
balance between link and switch memory utilization and to
avoid resource waste due to fragmentation (i.e., underutilizing
bandwidth resources because of quickly exhausting flow table
entries or vice-versa).

We implemented a prototype of SafeGuard using the Ryu978-3-903176-31-7 © 2020 Crown



SDN controller, which incorporates our heuristic and uses
OpenFlow Fast Failover Groups to immediately reroute traffic
when a failure happens. Our code is publicly available [9].
We perform an extensive evaluation of SafeGuard in Mininet
[10] over two real topologies, Goggle WAN (B4) and ATT,
and compare it with Sentinel [7], the state-of-the-art SD-WAN
failure recovery scheme. Our results show that SafeGuard can
reduce the number of congested links and backup route length
by up to 50% and 15%, respectively. In summary, we make the
following contributions:
• We formulate the failure recovery problem in SD-WANs as

a multi-objective optimization problem and solve it using
CPLEX. Unlike previous work, our model considers both
link and switch memory constraints and enables operators
to consider multiple objectives altogether.

• We develop a greedy heuristic to solve our model in
a reasonable time and design a software-defined failure
recovery system, called SafeGuard, to deploy our heuristic
on large scale SD-WANs.

• We implement a prototype of SafeGuard using the Ryu
SDN controller and make our code publicly available [9].

• We perform an extensive evaluation of SafeGuard over two
real WAN topologies and show it can efficiently utilize the
link and switch memory resources while protecting against
all possible single link failures.

The rest of the paper is organized as follows. We present
our multi-objective optimization model and describe the cor-
responding heuristic in Sections II and III, respectively. Sec-
tion IV describes the SafeGuard system. Section V provides
a discussion on the evaluation results. Finally, we present the
related work in Section VI and conclude the paper in Section
VII.

II. PROBLEM FORMULATION

In this section, we formulate the failure recovery problem in
SD-WANs as a MILP optimization problem. We elaborate on
the proposed model in the next subsections.

A. Network Design

We present a network as a digraph G = (V,E), where V =
{1, 2, .., n} is the set of network switches (or nodes) and E is
the set of links among the switches. Each link (i, j) ∈ E has
a capacity cij . Each flow demand in this network is f and has
a required bandwidth, bf . We assume demands represent the
aggregate traffic from an ingress to an egress switch and are
split among a set of primary routes Pf . The traffic rate of flow
f on each route p ∈ Pf is referred to as tfp1. In line with the
literature [11], [7], our model considers a single link failure e
2. In this case, the failure impacts all flows traversing that link.
For each impacted flow f , we assume a set Qf of backup routes
is available. Each route p ∈ Qf uses a portion of the impacted

1For simplicity, we use p to denote any route in our model (either primary
or backup).

2To consider all possible single link failures, one can repeatedly solve the
model for different failing links. This makes the model easier to solve and
allows instances for different failing links to be run in parallel.

TABLE I: Key notations used in the model.

Notation Description

Input

G(V,E) Network graph with switches V and Links E;
Pf Set of primary routes for flow f ;
Qf Set of backup routes for flow f ;
tfp Traffic rate of flow f on route p;
bf Bandwidth required for flow f ;
cij Total capacity of link (i, j) ∈ E;
Tci TCAM space capacity of node i ∈ V ;

[c]Auxiliaryvariables

e A failed link;
Fe Set of impacted flows by link failure e;
F Set of flows not impacted by link failure e;
P

′
f Set of primary routes for flow f ∈ Fe not impacted

by link failure e;
lp Length of route p ∈ P

′
f

⋃
Qf ;

rij,p 1 if link (i, j) ∈ p, 0 otherwise;
si,p 1 if node i ∈ p, 0 otherwise;

Output xfp Allocation of affected flow f on route p ∈ P
′
f

⋃
Qf ;

yfp Traffic rate of affected flow f assigned to route p;

primary route (i.e., from ingress switch to failing switch3), and
an alternative path from the failing switch to the egress switch
of the respective flow. Note that a link failure could impact
one or multiple primary routes of a flow, as primary routes are
not necessarily link-disjoint. We denote the set of non-affected
primary routes as P

′

f . In either case, we select both backup and
non-affected primary routes to compute a new routing for flow
f after a failure. Table I summarizes these notations.

B. Variables and parameters

We need to assign traffic rates on backup and unaffected
primary routes for each flow impacted by link failure e. For
that, we define two sets of decision variables: xfp, which is a
binary decision variable denoting the routes used for impacted
flow f after recovery, such that

xfp =

1 if route p ∈ P ′

f

⋃
Qf is used to forward

traffic from flow f,
0 otherwise.

(1)
and yfp to denote the traffic rate of impacted flow f

assigned to route p after the failure. We also define binary
variables, rij,p and si,p, to identify the links and nodes
belonging to route p, respectively:

rij,p =

{
1 if (i, j) ∈ p,
0 otherwise.

(2)

si,p =

{
1 if i ∈ p,
0 otherwise.

(3)

C. Constraints

1) Link and node capacity: constraints in (4) prevent link
utilization from exceeding its maximum capacity. The uti-
lization is calculated by summing up traffic rates assigned
to both affected (f ∈ Fe) and unaffected (f ∈ F ) flows,
either for primary or backup routes. Constraints in (5), on
the other hand, prevent switch memory usage from exceeding

3We define a failing switch as the source switch of a failing link.



its capacity. Similar to link capacity constraints, we calculate
switch memory usage by summing (unitary) demands from
primary and backup routes of both affected and unaffected
flows. Note that rij,p = 1 implies node i belongs to route
p of flow f .

∑
f∈Fe

∑
p∈P ′

f

⋃
Qf

yfprij,p +
∑
f∈F

∑
p∈Pf

rij,ptfp ≤ cij ∀(i, j) ∈ E

(4)

∑
f∈Fe

∑
p∈P ′

f

⋃
Qf

xfpsi,p +
∑
f∈F

∑
p∈Pf

si,p ≤ Tci ∀i ∈ V (5)

2) Traffic rate: constraints in (6) correlate variables xfp and
yfp. They ensure that traffic rate of flow f on route p is zero
when p is not used by f (i.e., xfp = 0). Otherwise, it must be
a positive number.

xfp ≤ yfp ≤ xfpbf , ∀f ∈ Fe, p ∈ P
′

f

⋃
Qf (6)

3) Flow satisfaction: constraints in (7) ensure flow demands
are satisfied, i.e., the total traffic rate of flow on its primary
and backup routes is equal to its demand. Note we only need
to consider constraints for affected flows (i.e., f ∈ Fe) as non-
affected ones are satisfied by default.∑

p∈P ′
f

⋃
Qf

yfp = bf ∀f ∈ Fe (7)

D. Objective function

The objective function (8) consists of two terms. The first
term optimizes the backup route length, while the second one
reflects the overall link utilization in the network. The function
also has two parameters, α and β, to favor a specific objective
depending on the operator needs (e.g., to favor shorter routes
due to application latency constraints or lower link utilization
due to network congestion). We conducted an extensive analysis
to empirically determine proper values for both parameters and
concluded that α needs to be approximately 10x smaller than
β to convey the same importance for both objectives4.

min
∑
f∈Fe

∑
p∈P ′

f

⋃
Qf

(αxfplp + β
∑

(i,j)∈E

rijpyfp
cij

) (8)

As a MILP problem, our model is known to be NP-Hard
[12] and thus can take a long time to be solved in practice. For
example, it took us more than an hour to solve this model for
Cogent5 topology on CPLEX. As traffic engineering intervals
are usually below 5 minutes, we develop a heuristic to solve
the SD-WAN failure recovery problem in a reasonable amount
of time. We describe our heuristic in the next section.

4See [9] for more information.
5https://cogentco.com/en/network/network-map

Algorithm 1: Heuristic for rerouting traffic
Input : Network topology G′ = (V,E\e); impacted

flows Fe; set of available routes
P = P

′

f

⋃
Qf ,∀f ∈ Fe

Output: Traffic rates assigned to ypf
1 Sort Fe in descending order according to flow demands
2 Sort P in ascending order according to route length
3 for f ∈ Fe do
4 for p ∈ P ′

f

⋃
Qf do

5 if ∀s ∈ p, us < Tcs − 1 then

6 ypf = min

(
min

(i,j)∈p
aij , df

)
7 else
8 if df ≤ min

(i,j)∈p
aij then

9 ypf = df
10 end
11 end
12 if ypf > 0 then
13 Update us, aij ∀s, (i, j) ∈ p
14 df ← df − ypf
15 end
16 end
17 end

III. PROPOSED HEURISTIC

In this section, we present our proposed heuristic, along with
an operational example. Algorithm 1 shows the procedure. It
takes as input the network topology after removing the failed
link e, the set of affected flows Fe, and a set of candidate routes
P containing both backup routes and non-affected primary ones
for all affected flows. Our goal is to reroute these flows over
the candidate routes to satisfy their demands df within the link
and switch memory budget. We start by sorting the affected
flows and available paths in descending and ascending order
according to their demands and route length, respectively (lines
1-2). Thus, we try to use the shortest routes first while greedily
allocating the flow demands from biggest to smallest to avoid
fragmentation issues. We then iterate over all candidate paths
for a given flow, checking whether all switches in that path
have enough memory capacity (us) for hosting the new demand
(lines 3-5). When enough memory is available, we allocate
the minimum between the flow demand and the remaining
bandwidth capacity (aij) of the bottleneck link (line 6).

We adopt a “biggest demand first” strategy until we reach a
given threshold in terms of switch memory utilization on a route
(Tcs−1 for the bottleneck switch in our case)6. After that, we
start looking for a “best-fit” demand for it, i.e., demands that
can be fully satisfied to ensure that smaller flows have access to
shorter routes too (lines 8-10). Finally, we update the remaining
capacities and demand to be allocated whenever we select a
path for a flow (lines 12-15). Although this approach can be

6Exploring different thresholds is possible, and we leave that as future work.



(a) (b) (c)

Fig. 1: a) Traffic rates on the primary routes of two flows
(blue and black). The available capacity of all links is 20Mbps
except link S4−S5 whose capacity is 5Mbps; b) the available
tunnels for the affected flow with the highest demand and
corresponding traffic rates assigned to them; c) the available
tunnels for the second affected flow after the link failure with
the traffic rates assigned to them.

detrimental for some shorter flows, it is in line with our multi-
objective optimization model, where we strike for a balance
between route length and link utilization. In particular, purely
allocating smaller demands first would lead to bigger demands
being assigned to longer routes and thus to a higher number
of more utilized links. The time complexity of Algorithm 1 is
proportional to the number of flows affected by a link failure
and the corresponding set of available routes. Suppose |Fe| =
M and |P | = N , then the time complexity of the algorithm is
O(MN(|V |+ |V |log|V |)), which is given by the operations at
lines 3-6.

We illustrate the operation of Algorithm 1 in Fig. 1. There
are two flows {f1, f2}: f1 from switch S1 to S5 has a demand
of 25Mbps while f2 from switch S2 to S5 requires 20Mbps.
Their routing tunnels and corresponding rates are shown in
Fig. 1(a). For simplicity, we assume that all switches have
enough memory to accommodate these two flow rules. We
also assume that the available capacity of all links is 20Mbps
except link S4−S5. Its available capacity is 5Mbps; thus, it is
the bottleneck link. The failure of link S3 − S5 impacts both
{f1, f2}. In the following, we illustrate the operation of the
heuristic.

Algorithm 1 starts with flow f1 (black flow) as it has the
higher demand. This flow has two available tunnels to send the
traffic after the failure: S1 − S4 − S5 and S1 − S3 − S6 − S5.
It sends 15Mbps over the former tunnel. Note that before
the failure, this tunnel could carry 10Mbps for f1 because of
sharing its capacity with f2, which is not the case after the
failure. The remaining 10Mbps is allocated over the second
tunnel. On the other hand, the available tunnels for the second
flow f2 are: S2 − S4 − S5 and S2 − S1 − S3 − S6 − S5. The
traffic allocation on the former one (10Mbps) does not change
as it has no more capacity. The remaining 10Mbps can be sent
over the second tunnel. Note that in both cases, one of the
original tunnels remains unchanged except the corresponding
rate that depends on the available capacity of the bottleneck
link.

Topology

Backup
paths

Primary 
allocation

Failures

Traffic
matrix

Primary
paths

[ ]

Fail

Resilient 
allocation

Proposed 
heuristic

Fig. 2: SafeGuard architecture.

IV. SAFEGUARD OVERVIEW

SafeGuard is an SDN failure recovery system that enables
fast recovery while taking network congestion and scarce
switch memory resources into account. SafeGuard runs as a
controller application that deploys our proposed heuristic to
derive resilient routing configurations to network switches at
every traffic engineering interval.

Control plane. Fig. 2 shows SafeGuard architecture. It
receives a traffic matrix, the network topology, and a set of
forwarding routes (primary routes) as input, and produces a
primary allocation that will be used for forwarding traffic under
normal conditions (i.e., when there is no failure in place).
SafeGuard then applies our proposed heuristic to augment the
primary allocation with backup routes for all flows for each pos-
sible single link failure. Ultimately, it outputs a resilient routing
allocation as a set of forwarding rules for SDN switches.

Data plane. SafeGuard uses the OpenFlow protocol (version
1.3 [13]) to manage network switches. Each switch includes
at least one Flow Table and a Group Table. The flow table
contains a set of flow rules, each consisting of match fields and
corresponding action (or instruction). The group table, on the
other hand, consists of group entries containing one or more
action buckets. Table II shows an example. SafeGuard uses
two types of groups: select and fast failover groups.
The former groups assign traffic rates and balance load among
multiple paths. This group type executes one action bucket in
the group at a time according to a weight set as a parameter.
The fast failover groups reroute traffic upon detecting a
link failure (a down port), i.e., it executes the first live bucket.

Let us now refer to Fig. 1 and consider its first flow (f1:
from S1 to S5) to show how SafeGuard configures the flow and
group tables at switches S1 and S3 to recover from a failure.
Table II outlines the flow and group tables at the source switch
S1. We have one flow entry that points to one of the groups.
Before the link failure, the flow entry points to group 1 (G1.1)
of type select in the group table to assign traffic rates to the
two available routes (see Fig. 1(a)). Group entry 1, on its turn,
points to groups 2 and 3, which are of type fast failover.
As both ports of S1 are up in our example, G 1.2 and G 1.3
forward packets over ports 1 and 2, respectively.



TABLE II: Flow and group tables at S1 for the example in
Fig. 1

.

(a) Flow table at S1

Match Field
SrcAdrr DstAdrr Instruction

S1 S5 G1.1

(b) Group table at S1

Group ID Group Type Action Buckets

G 1.1 select weight: 3
5

, action: G 1.2
weight: 2

5
, action: G 1.3

G 1.2 fast failover outport: 1
outport: 2

G 1.3 fast failover outport: 2
outport: 1

G 1.4 select weight: 2
5

, outport: 1
weight: 3

5
, outport: 2

TABLE III: Flow and group tables at S3 for the example in
Fig. 1

.

(a) Flow table at S3

Match Field
SrcAdrr DstAdrr Instruction

S1 S5 G 3.1

(b) Group table at S3

Group ID Group Type Action Buckets

G 3.1 fast failover outport: 1
outport: 2

Table III shows the flow and group tables at switch S3, which
detects the failure. Before the link failure, it sends packets from
S1 to S5 through port 1 (route S1 − S3 − S5). After detecting
the failure, S3 notifies the controller and immediately starts
sending packets from S1 to S5 using port 2 because of the
fast failover group (route S1 − S3 − S6 − S5). After
receiving the failure notification from S3, SafeGuard modifies
the instruction in the flow table of S1 to point to group 4 (G1.4)
to update the allocated rates for each route used by the affected
flow.

Workflow. Fig. 3 shows the SafeGuard workflow. The same
process repeats every traffic engineering interval. First, Safe-
Guard computes and installs all primary tunnels and splitting
weights for every flow (step A). Then, it proactively installs
backup routes and computes the weights for allocated flows
for allowing them to deal with any single link failure (step
B). When a failure happens, the failing switch activates the
corresponding backup tunnels connecting itself to the egress
switches of the corresponding affected flows and sends a
message reporting the failure to the network controller (step
C). Finally, the network controller (which implements the
SafeGuard heuristic) adjusts splitting weights for all affected
flows at their respective ingress switches (step D).

Source
node

Intermediate
node

SafeGuard

A: Install primary 
routes and splitting 

weights

B: Install backup
routes and splitting 

weights

C: Failure
report

D: Weight
adjustment

Fig. 3: SafeGuard workflow.

V. EVALUATION

We implement SafeGuard as a Python application (≈ 700
lines of code) on top of the Ryu SDN controller (version 4.30).
The source code is available at [9]. In this section, we present
our evaluation for the SafeGuard prototype.

A. Setup

Our experiments run on a machine with 2.66GHz 12 core
CPU and 44GB RAM equipped with Mininet (version 2.2.2).
We consider two network topologies: Google B4 [14] (12
nodes and 38 links) and ATT [15] (25 nodes and 112 links).
Each node is deployed as a CPqD7 switch instance [16]. Link
capacities are set to 1 Gbps with a 1ms delay. We benchmark
SafeGuard against Sentinel [7], the state-of-the-art SD-WAN
failure recovery approach. When a failure happens, Sentinel
relies on the link-disjoint tunnels to distribute the traffic rate
of affected flows. Sentinel targets minimizing the maximum
link utilization while not considering the length of the backup
tunnels or switch memory usage. The workload is comprised
of UDP flows generated using iperf. Unless explicitly mention,
we fix the flow rate (50 Mbps) and vary the number of flows
in each experiment, similar to [7]. We use byte counters in the
switches to get link utilization and measure the route stretch
by looking at the selected backup routes. Our results report an
average of 30 runs.

B. Results

Link utilization. We start by discussing the impact of
failures on the overall network utilization. Our interest here
is to assess the susceptibility of SafeGuard and Sentinel to
congestion after a link failure. For these experiments, we fix
the number of flows at 60 for B4 and 200 for ATT, and
randomly fail a link to measure the utilization of the remaining
(active) links. Fig. 4 shows the CDF of link utilization across

7At the moment of writing this paper, Open vSwitch did not support
weighted round-robin policies for traffic splitting.



 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2  0.4  0.6  0.8  1

C
D

F

Link Utilization

SafeGuard
Sentinel

(a) B4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5  0.6  0.7  0.8  0.9  1

C
D

F

Link Utilization

SafeGuard
Sentinel

(b) ATT

Fig. 4: FOR TEST CDF of link utilization for B4 and ATT
topologies.

all active links for both topologies after a failure. As can be
seen, SafeGuard distributes the traffic load more uniformly than
Sentinel. For B4 (Fig. 4a), neither approach led to congested
links (i.e., utilization equal to one). However, 28% of the links
are close to congestion with utilization higher than 80% in
Sentinel. That number drops to 20% in SafeGuard.

For ATT (Fig. 4b), because of the higher number of flows, we
also have higher link utilization compared to B4. Nevertheless,
SafeGuard outperforms Sentinel with a bigger margin. For
example, the load imposed by SafeGuard is above 80% for
less than half of the links (around 40%) while in Sentinel, this
number increases to 57%. That is because SafeGuard can use
any active link to reroute traffic, even along the affected primary
route, while Sentinel requires link-disjoint paths and thus has
fewer options to balance traffic. Note that both approaches
result in some level of congestion after a failure. However,
the number of congested links is 50% smaller in SafeGuard
compared to Sentinel.

Route stretch. Next, we look at the length (number of
hops) of the backup routes selected by SafeGuard and Sentinel
when a failure occurs. Longer backup routes can degrade ap-
plication performance due to their increased latencies. In these
experiments, we generate traffic between different numbers of
randomly selected source-destination pairs and calculate the
route stretch [17] (i.e., the ratio between the length of the
longest path used by flow and the length of the shortest possible
path for that flow) for both approaches after failing a link.
Fig. 5a shows the average route stretch for the B4 topology.
We can see that SafeGuard outperforms Sentinel for all amounts
of flows. In particular, it can lead to backup routes up to
15% smaller than Sentinel for 60 flows (route stretch of 1.38
against 1.64). We observe a similar trend for the ATT topology
(Fig. 5b), where SafeGuard performs better for a higher number
of flows. For example, it results in backup routes around 10%
smaller than Sentinel for 200 flows.

VI. RELATED WORK

Failure recovery in SDN. In addition to Sentinel [7], already
discussed throughout the paper, there has been a large body of
work on developing failure recovery strategies for software-
defined networks [11], [18]–[23]. In common, most of them
require customized headers (i.e., extensions to the OpenFlow
protocol) and/or network device modifications to be deployed.

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8

20 30 40 50 60

R
o

u
te

 s
tr

et
ch

Number of flows

SafeGuard
Sentinel

(a) B4

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7

40 80 120 160 200

R
o

u
te

 s
tr

et
ch

Number of flows

SafeGuard
Sentinel

(b) ATT

Fig. 5: Average route stretch of SafeGuard and Sentinel after
facing link failures.

Revive [24] proposes to systematically construct routing topol-
ogy based on [25] to proactively install alternative routes on
a subset of switches between a given source-designation pair.
SD-FAST [26] extends this idea and ensures that fail-free
traffic does not traverse tables associated with failure-recovery
operations in the packet processing pipeline. Plinko [27] and
Zhu et al. [28] propose compressing flow tables to reduce
switch memory demands while deploying backup routes in
SDN switches. These efforts are complementary to SafeGuard
and can be used to reduce its memory footprint.

WAN traffic engineering. Many prior works focus on
traffic engineering solutions for efficient failure recovery in
wide-area networks. CASA [29] defines multiple link-disjoint
arborescences (directed graphs with a single route from any
node to the root) for each source-destination pair. Forward fault
correction (FFC) [6] sets a bandwidth cap to support up to k
arbitrary failures. TeaVaR [30] considers the failure probability
of each link to maximize the network utilization while main-
taining an expected availability. SMORE [31] constructs semi-
oblivious routes between communicating pairs and distributes
traffic among these routes while minimizing the maximum link
utilization. Unlike SafeGuard, none of these approaches target
SD-WANs and their tight switch memory capacities.

VII. CONCLUSION

Various traffic engineering mechanisms have been developed
to ensure that software-defined WANs do not experience signif-
icant congestion in the presence of link failures. However, none
of these mechanisms take practical switch memory constraints
into account while rerouting impacted flows. In this paper,
we propose a novel TE system for SD-WANs, called Safe-
Guard, that can quickly recover from failures by proactively
allocating backup routes at the same time it accommodates
both bandwidth and switch memory demands. We implemented
a prototype of SafeGuard on top of the Ryu SDN controller
and extensively evaluated it over two real topologies (Google
B4 and ATT) using Mininet. Our results show that SafeGuard
outperforms the state-of-the-art failure recovery scheme for SD-
WANs, Sentinel.

ACKNOWLEDGEMENTS

We would like to thank the anonymous CNSM reviewers
for their constructive feedback. An NSERC Discovery Grant
partially supported this work.



REFERENCES

[1] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker, “Ethane: Taking control of the enterprise,” SIGCOMM
Comput. Commun. Rev., vol. 37, no. 4, pp. 1–12, Aug. 2007.

[2] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. Gude, N. McKeown,
and S. Shenker, “Rethinking enterprise network control,” IEEE/ACM
Transactions on Networking (TON), vol. 17, no. 4, pp. 1270–1283, August
2009.

[3] F. da Rocha, C. Paulo, and E. S. Mota, “A survey on fault managementin
software-defined networks,” IEEE Communications Surveys and Tutori-
als, vol. 19, no. 4, pp. 2284–2321, August 2017.

[4] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah, and
C. Diot, “Characterization of failures in an IP backbone,” in IEEE
International Conference on Computer Communications (INFOCOM).
IEEE, 2004.

[5] N. L. Van Adrichem, B. J. Van Asten, and F. A. Kuipers, “Fast recovery
in software-defined networks,” in Software Defined Networks (EWSDN),
2014 Third European Workshop on. IEEE, 2014, pp. 61–66.

[6] H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gelernter, “Traffic
engineering with forward fault correction,” in SIGCOMM 2014. ACM
- Association for Computing Machinery, August 2014.

[7] J. Zheng, H. Xu, X. Zhu, G. Chen, and Y. Geng, “Sentinel: Failure
recovery in centralized traffic engineering,” IEEE/ACM Trans. Netw.,
vol. 27, no. 5, pp. 1859–1872, 2019.

[8] B. Zhao, J. Zhao, X. Wang, and T. Wolf, “Ruletailor: Optimizing flow
table updates in openflow switches with rule transformations,” IEEE
Transactions on Network and Service Management, pp. 1581–1594, 2019.

[9] “Safeguard,” https://github.com/Meysam-Sh/SafeGuard.git.
[10] “Mininet,” http://mininet.org.
[11] A. Capone, C. Cascone, A. Q. Nguyen, and B. Sanso, “Detour planning

for fast and reliable failure recovery in sdn with openstate,” in Design
of Reliable Communication Networks (DRCN), 2015 11th International
Conference on the. IEEE, 2015, pp. 25–32.

[12] j. D. S. Hartmanis, M. R., “Computers and intractability: a guide to the
theory of np-completeness,” Siam Review, 1982.

[13] Open Networking Foundation, “Openflow switch specification,” Septem-
ber 2012.

[14] S. Jain, M. S. Kumar, A., J. Ong, L. Poutievski, A. Singh, and J. Zolla,
“B4: Experience with a globally-deployed software defined wan,” ACM
SIGCOMM Computer Communication Review, pp. 3–14, 2013.

[15] “Att topology,” http://www.topology-zoo.org/maps/AttMpls.jpg.
[16] “CpqD switch,” git@github.com:CPqD/ofsoftswitch13.git.
[17] L. J. Cowen, “Compact routing with minimum stretch,” in Journal of

Algorithms 38.1. IEEE, 2001, pp. 170–183.
[18] D. Merling, W. Braun, and M. Menth, “Efficient data plane protection

for sdn,” in 2018 4th IEEE Conference on Network Softwarization and
Workshops (NetSoft), 2018, pp. 10–18.

[19] J. Kempf, E. Bellagamba, A. Kern, D. Jocha, A. Takacs, and
P. Sköldström, “Scalable fault management for openflow,” in 2012 IEEE
International Conference on Communications (ICC), 2012, pp. 6606–
6610.

[20] R. M. Ramos, M. Martinello, and C. Esteve Rothenberg, “Slickflow:
Resilient source routing in data center networks unlocked by openflow,”
in 38th Annual IEEE Conference on Local Computer Networks, 2013,
pp. 606–613.

[21] M. Borokhovich, L. Schiff, and S. Schmid, “Provable data plane connec-
tivity with local fast failover: Introducing openflow graph algorithms,”
ser. HotSDN ’14, 2014, p. 121–126.

[22] W. Braun and M. Menth, “Loop-free alternates with loop detection for
fast reroute in software-defined carrier and data center networks,” Journal
of Network and Systems Management, vol. 24, pp. 470–490, 2016.

[23] C. Cascone, L. Pollini, D. Sanvito, A. Capone, and B. Sansó, “Spider:
Fault resilient sdn pipeline with recovery delay guarantees,” in 2016 IEEE
NetSoft Conference and Workshops (NetSoft), 2016, pp. 296–302.

[24] I. Haque and M. Moyeen, “Revive: A reliable software defined data
plane failure recovery scheme,” in 2018 14th International Conference on
Network and Service Management (CNSM). IEEE, 2018, pp. 268–274.

[25] I. Haque, S. Islam, and J. Harms, “On selecting a reliable topology in
wireless sensor networks,” in Proceedings of the 2015 IEEE International
Conference on Communications, ser. ICC ’15, 2015.

[26] M. Moyeen, , F. Tang, D. Saha, and I. Haque, “Sd-fast: A packet rerouting
architecture in sdn,” in 2019 15th International Conference on Network
and Service Management (CNSM). IEEE, 2019.

[27] B. Stephens, A. L. Cox, and S. Rixner, “Scalable multi-failure fast failover
via forwarding table compression,” in Proceedings of the Symposium on
SDN Research, ser. SOSR ’16, 2016.

[28] Z. Zhu, Q. Li, M. Xu, Z. Song, and S. Xia, “A customized and cost-
efficient backup scheme in software-defined networks,” in 2017 IEEE
25th International Conference on Network Protocol (ICNP). IEEE, 2017,
pp. 1–6.

[29] K. Foerster, Y. Pignolet, S. Schmid, and G. Tredan, “Casa: Congestion
and stretch aware static fast rerouting,” in IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications, 2019, pp. 469–477.

[30] R. B. . G. R. Supittayapornpong, S., “Striking the right utilization-
availability balance in wan traffic engineering,” In Proceedings of the
ACM Special Interest Group on Data Communication, pp. 29–43, 2019.

[31] P. Kumar, Y. Yuan, C. Yu, N. Foster, R. Kleinberg, P. Lapukhov,
C. L. Lim, and R. Soulé, “Semi-oblivious traffic engineering:
The road not taken,” in 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18). Renton, WA:
USENIX Association, Apr. 2018, pp. 157–170. [Online]. Available:
https://www.usenix.org/conference/nsdi18/presentation/kumar


