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Abstract—Network management and Quality of Service (QoS)
support are becoming more challenging with the increase in
network traffic, size, and service requirements. To meet these
challenges, we need a programmable and intelligent framework
for automated QoS support; static or threshold-based approaches
are not adequate. We propose a software-defined and machine-
learning-based intelligent QoS framework called PIQoS. PIQoS
enables software-defined networking (SDN) controllers to effec-
tively, efficiently, and autonomously react, in a vendor agnostic
way, to changes in network links by (1) placing link failure
detection and recovery in the data plane and (2) applying
supervised learning methods to the tasks of dynamically detecting
link failures and congestion and appropriately reconfiguring the
network so that it can continue to provide the required QoS
as link properties change over time. To test the performance of
a system based on PIQoS, we performed extensive simulation
experiments in Mininet, using real network topologies. We
also studied the comparative performance of several supervised
learning methods applied to our specific detection and correction
problems to determine which methods are most appropriate
for this domain. Our simulation results highlight the potential
efficacy of the PIQoS framework when applied in real networks.

I. INTRODUCTION

Network monitoring and Quality of Service (QoS) support
have become a challenge with an increase in network traffic,
their dynamics, and service requirements. Quality factors such
as throughput, delay, and path length are important for service
providers to maintain and provide a consistent user experience.
However, network states change unpredictably, which demands
dynamic policy configuration and management. Thus, it is not
efficient to solve this problem using static policy manage-
ment [1]–[3] or dynamic policy management with predefined
thresholds [4]. Instead, QoS can be improved by automating
the process of error detection and the root cause analysis.
This automated QoS framework can be designed using a
programmable and intelligent network.

Software-defined networking (SDN) [5] allows network
operators a programmatic and elegant way of dynamically
implementing a wide-range of network policies and rapidly
deploying new services. For instance, PolicyCop [4] configures
network based on the dynamically changing policies. However,
PolicyCop considers predefined policies and thresholds and
consults a network manager in the case of a violation with
a missing policy. PolicyCop furthermore deploys restoration-
based link failure recovery scheme, i.e., upon detecting a link

failure associated switch contacts the controller to recover
from a failure. However, restoration-based recovery introduces
a delay that can impact the required QoS.

In this paper, we propose a programmable and intelligent
framework called PIQoS for QoS-based policy automation.
In PIQoS, we first push the link failure recovery at the data
plane using protection-based recovery scheme. In this scheme,
a controller proactively installs alternative route between every
source-destination pairs. We implement this recovery using
the Fast Failover Group (FFG) of the OpenFlow protocol
[6]. Note that the OpenFlow protocol enables communication
between the data and control plane of an SDN architecture.
The protection-based recovery scheme improves both the delay
and throughput by avoiding the communication delay between
the data and control planes.

QoS requirements are different in different networking
applications. Machine learning can improve the QoS by un-
derstanding the traffic patterns in a network and suggesting
a network manager with a better policy management in less
time. Machine learning has been used in traffic classification
and QoS improvement; however, there is no work on dynamic
QoS-based policy management through root cause analysis of
error conditions in networks using machine learning. Thus, in
PIQoS we use flow-level traffic for root cause analysis and
design two models using supervised machine learning algo-
rithms. We consider supervised algorithms because of their
prediction accuracy over unsupervised ones. The first model
detects various errors in a network by analyzing the network
state traffic and the second model predicts the root cause of the
error to update corresponding policy for QoS provisioning. We
consider both the link failure and network congestion to design
and test the models, which are implemented in the controller
to detect and react to link failures or congestions.

We use real network topology like USNET [7] in Mininet
[8] emulator to evaluate the performance of PIQoS. In Mininet,
we use a Ryu controller and a set of Open Virtual Switches
[9]. The evaluation results reveal that PIQoS improves the
link failure recovery time and network throughput compared
to its counterpart. The results furthermore illustrate that the
decision tree is the right supervised algorithm for the use cases
considered in this paper. In a nutshell, we demonstrate that the
learning based intelligent QoS provisioning is useful compared
to a static or a threshold based QoS management.



The rest of the paper is organized as follows. We present
necessary background to understand PIQoS in Section II
and the related work on QoS-based policy management in
Section III. Next, we describe the proposed PIQoS framework
for QoS-based policy automation in Section IV. Section V
provides the details of experimental setup. The following
section presents the details of the data derived for the models.
The experimental evaluation results in Section VII demonstrate
the effectiveness of the proposed framework following some
concluding remarks in Section VIII.

II. BACKGROUND

In this section, we present the necessary background to un-
derstand the operation of PIQoS. Link failure can occur in any
networks. In SDN design, two types of link failure recovery
approaches can be deployed: restoration and protection [10].
In the restoration scheme, a data plane switch contacts the
controller upon detecting a link failure to receive alternative
route configuration, which introduces communication delay. In
the protection scheme, backup routes are configured before a
failure occurs. Switches can locally detect a failure and redirect
the affected traffic to alternative route without communicating
the controller, which reduces the delay.

In SDN architecture, OpenFlow protocol supports Fast-
Failover Group (FFG) to implement the failure recovery at the
data plane. In particular, this switchover can be implemented
using the Flow and Group tables of OpenFlow 1.3 [11]
protocol. A switch maintains a group table with a number of
active buckets. Each bucket is associated with a port from a
route and only a single bucket is active at a time. The incoming
packet flows through the port from an active bucket. In the case
of a link failure, the next active port and bucket is chosen to
redirect the affected traffic.

In machine learning, supervised algorithms use labeled
data sets to create models, while unsupervised learning tries
to discriminate patterns in unlabeled data. Each of these
algorithms is better suited for a particular type of application
(e.g., classification, regression or clustering) and the method to
be used depends on the way the problem is being formulated.
Additionally, different learning algorithms (e.g., decision trees,
neural networks or support vector machines (SVM)) can be
used to solve the same problem, and the best choice depends
on the requirements of each scenario (e.g., performance and
accuracy constraints).

In this paper, we consider both the supervised and un-
supervised algorithms as the former offers better accuracy,
whereas the latter one avoids labeling training data set. Thus,
we test both algorithms to find the suitable algorithm for
the proposed learning models of PIQoS. In addition, we
consider different algorithms from both the supervised and
unsupervised algorithms to choose a suitable one. In PIQoS,
decision trees and k-means offer the best performance. In the
following, we briefly outline these two algorithms.

In a decision tree algorithm, data is stored in a tree-like
structure, where a node, branch, and leaf-node represent test,
decision, and class label, respectively. Thus, a decision tree

path defines the data classification rules. In our implemen-
tation, we used ID3 algorithms, an attribute that best classify
training data is chosen as the root and repeat the same process
at each branch until all attributes are covered and a complete
tree is obtained. The attributes can be categorized based
on their information gain, and an attribute with the highest
information gain is the root node [12].

K-means clustering is an algorithm that partitions data
points or observations into clusters, where each cluster of
data points has a centroid defined by those data points. At
the beginning of the clustering, we can randomly choose K
centroids and iteratively optimize their positions [12]. Thus,
we can find the best value of K and corresponding centroids
using the training data set. Then, a test point belongs to a
cluster whose centroid is the closest to that test point [12].

III. RELATED WORK

In this section, we present existing works that are closely
related to the proposed PIQoS framework. Various policy
enforcement frameworks have been proposed for QoS pro-
visioning [3], [13]–[15]. Most of these existing works target
inflexible QoS architectures, which lack a broader network
picture, reconfigurability, and adaptability [16]. SDN enables
network programmability through hardware abstraction and
global network view. A set of works exploited SDN archi-
tecture to realize efficient QoS provisioning.

QoS provisioning based on predefined classes of traffic
with static QoS parameters is proposed in [17] and a similar
predefined threshold-based QoS provisioning is presented in
[18]. Tegueu et al. defined an architecture that guarantees dy-
namic QoS requirement of applications and efficient network-
resource utilization, where an application-specific QoS de-
mand is identified using deep packet inspection (DPI) over
flow-based packet forwarding [19]. However, multiple appli-
cations may have similar QoS requirement and fall in the same
QoS class. Thus, Wang et al. used DPI and semi-supervised
learning algorithm to design a QoS-aware traffic classification
framework for fine-grained traffic engineering [20].

PolicyCop [4] implemented an automatic QoS-based policy
enforcement framework, to meet SLAs in a software-defined
network. In the case of any policy violation, a policy adapta-
tion module takes action accordingly to predefined policies. In
the case of a missing policy, PolicyCop consults the network
manager to install the newly required policy manually. Al-
Jawad et al. used Neural network to learn the congestion that
can violate QoS policies [21]. The authors deployed either
rerouting or rate limiting in the case of policy violation to
readjust the QoS requirements. The proposed PIQoS offers
automatic QoS provisioning by deploying a learning module
in the controller, which predicts the reasons for failures and
congestion to take quick recovery actions.

IV. PIQOS FRAMEWORK

In this section, we describe the policy automation frame-
work, PIQoS. First, it pushes the link failure detection and
recovery at the data plane to improve the delay and throughput,



Fig. 1. The workflow of the proposed PIQoS framework.

which also scales with a large network. PIQoS framework
furthermore has an learning-based policy automation module
in the controller. It collects flow-level statistics from data plane
switches. The controller monitors the network for both the
policy violation and corresponding root cause analysis. The
workflow of PIQoS framework is presented in Figure 1.

The static module: The network state traffic is sent to the
check policy module, which checks for any policy violation
based on corresponding predefined parameters and threshold
at the initial stage of model development. In the case of any
policy violation, event classifier classifies the event into one
of the predefined cases. Depending on the classification a
predefined action is taken; in the case of a missing action,
the new policy is added to the system. We consider the above
policy management of PIQoS as static, which mainly helps
the adaptive ML-based model to adapt over time by proving
additional classified traffic.

The adaptive module: In addition, the monitored traffic is
passed to train the error prediction model, which predicts any
errors or unusual network states. These states are then sent
to the alarms database. All alarms from different modules
are integrated using flow IDs and then ranked according to
their priority. The priority is assigned based on the error
prediction model outcome of minor, major, or initial threshold.
The alarms are then propagated to the policy prediction model,
where the root cause of the errors and corresponding policy
are predicted. The associated data are then forwarded to the
predicted policy database (PPDB).

The network manager has access to the PPDB to observe
the critical issues with predicted reasons and solutions. The

network manager can define a new policy for the observed
errors to accommodate any future events. The newly defined
policies are accumulated in the policy database which can be
used to retrain the models on a timely basis. As the model
is trained over time, it becomes more accurate in predicting
solutions. Thus, the learning models help the network manager
resolve any unusual issues promptly, where prediction is based
on past experiences.

V. EXPERIMENTAL SETUP

Fig. 2. The USNET topology.

In this section, we outline the experimental setup used to
evaluate the performance of PIQoS. We evaluate the per-
formance of the proposed framework in Mininet emulator
using a Ryu controller. The controller controls the USNET
topology (shown in Figure 2) formed out of a collection of
software switches (OVS). We use iperf to generate traffic and
a Ryu controller collects the statistics on network states at a
regular interval. The collected statistics are fed to the policy
management module deployed in the controller. We use Scikit
and Weka to implement the proposed learning models.

In order to evaluate the resiliency performance of PIQoS,
we consider a ten node mesh topology as well as the USNET
topology, where each switch has an associated host. We
measure the end-to-end delay and throughput to compare and
contrast the performance of PIQoS with PolicyCop. We define
the delay as the total time a packet takes to travel from a
source to a destination. Applications like VoIP and online
games require a small delay to meet the QoS. The supervised
machine learning models are trained and tested on the USNET
topology, where link failure is tested with twenty-four switches
each having one host, whereas congestion is checked with the
same number of switches each having four hosts.

VI. MODEL EVALUATION DATA

A machine learning model can be trained and tested us-
ing either offline or online data. The former option allows
gathering a large amount of data for model training and
testing, whereas online or real-time network steaming can be
used as feedback or input to the model [22]. The streaming
data is mostly used in the production network to detect and
analyze error conditions on-the-fly. In this paper, we consider
offline data to demonstrate the effectiveness of the proposed
PIQoS framework; however, it can be deployed in a production
network. We configure the Ryu controller to collect statistics
at a regular interval to capture a wide range of features like



TABLE I
SAMPLE DATA FOR POLICY PREDICTION MODEL

Time stamp Flow
ID

Source
Node

Dest.
Node

Source
Out-
port

Dest
in
Port

Packets Bytes Link
speed

Source
Outport
Capacity

Dest
inport
Capac-
ity

Source
port
Speed

Dest
port
Speed

Delay
(ms)

Class

2018-11-
1116:23:27

32 17 8 5 8 2 2132 0 10 10 0 0 7 Link-
Fail

2018-11-
1116:23:28

32 8 6 3 5 2 2132 0 10 10 0 0 7 Link-
Fail

2018-11-
1116:28:28

112 8 11 2 7 439 658340 22.8 10 10 22.1 25.3 2.371 Congestion

throughput, delay, number of packets and bytes, port speed and
capacity, and flow ID to evaluate our model. The captured data
has associated timestamp to help the network manager to track
incidents.

TABLE II
THE LIST OF FEATURES USED IN PIQOS.

Feature Explanation
Time stamp When a flow starts at a link
Flow ID ID of a flow or a path
Source Node Source node of a link in a flow
Destination Node Destination node of a link in a flow
Source Outport Port from which a source node sends pack-

ets
Destination Inport Port from which a destination node receive

packets
Packets Total number of packets sent in a link
Bytes No of bytes sent in a link
Linkspeed (B/Sec) Speed of a link
Source Outport Capacity Maximum capacity of a source outport
Destination Inport Capac-
ity

Maximum capacity of a destination inport

Sourceport Speed (B/s) Speed at which a source outport sends pack-
ets

Destination port Speed
(B/s)

Speed at which a destination inport receives
packets

Delay (ms) Time taken for a packet to be transferred
from a source to a destination in a flow

Error Prediction Classifi-
cation

A flow has an issue or not (error/no error)

Policy Prediction Classifi-
cation

Classification type (link failure/congestion)

TABLE III
THE NUMBER OF FLOWS AND LINKS USED FOR TRAINING AND TESTING

MODELS.

ML
Models

Total
Flows

Total
Links

Training
Flows

Training
Links

Testing
Flows

Testing
Links

Error Pre-
diction

318 1020 225 714 93 306

Policy
Prediction

151 465 106 326 45 139

In the case of error prediction model, we use parameters
like Flow ID and associated source-destination hosts, ports, the
corresponding number of bytes and packets, and timestamp.
We also gather information about throughput and delay. Data
collection considered a different level of granularity like a
switch, port, or flow. The sample data for the policy prediction

model is presented in Table I. We consider a total of 1500
instances for the error prediction model and 800 instances
for the policy prediction model. We consider link failure and
congestion as the unusual conditions in the network, which
can be extended to cover other use cases. Note that due to the
space limitation we are not presenting sample data from error
prediction model, which is similar to that of policy prediction
model.

We use the set of features shown in Table II for the
proposed error and policy prediction models. There are fifteen
features, which are chosen based on the standard parameters
and metrics used in real networks for policy management and
QoS provisioning. We plan to explore other features in our
future research. The total number of flows and links used for
training and testing our models is shown in Table III. In the
case of supervised learning, we use labeled training data to
train the error prediction model about error conditions like link
failure and congestion. The labeled error data is then used to
train the policy prediction model to classify link failure vs.
congestion. In the case of unsupervised learning, we follow
the same procedure except that the data does not have any
labeling.

We use k-fold cross-validation to test the proposed models
to avoid over-fitting and selection bias problems. The cross-
validation also gives an insight on how a model can be
generalized to an independent data set. In the k-fold cross-
validation, we partition the training data set into five bins. At
each of the k iterations, one bin is used for testing and rest of
the k-1 bins are used to train the model.

VII. DISCUSSION ON THE EVALUATION RESULTS

A. Resiliency of PIQoS

In this section, we present the resiliency and efficiency of
PIQoS, which is compared with PolicyCop. The evaluation
results are shown in Figure 3 and Figure 4. The policy
management module of the controller gathered the network
statistics every three seconds. Thus, PolicyCop can learn any
link failure event once a new set of statistics is gathered. Then,
Policycop reactively installs an alternative route to redirect
the affected traffic. In PIQoS, we pushed that recovery at the
data plane using restoration scheme, i.e., the controller installs
alternative route at each switch to recover from a failure. Thus,
upon detecting a link failure, a switch uses FFG of OpenFlow



protocol to locally redirect the traffic to an alternative route
without controller’s intervention.

Fig. 3. The average throughput with local link failure recovery.

The average throughput of PolicyCop and PIQoS are shown
in Figure 3. The result illustrates that the performance of
PolicyCop drops in between two consecutive statistics gath-
ering events as the controller needs to learn a failure event to
reconstruct a new route. PIQoS, on the other hand, locally
recovers from a link failure, which immediately improves
the throughput. Local recovery scheme furthermore reduces
control packet propagation between the data and control plane
to scale with a large network.

Fig. 4. The average delay with local link failure recovery.

The average delay experienced by PolicyCop and PIQoS
is presented in Figure4. The link failure recovery time of
PolicyCop is on the order of seconds, whereas it is on the order
milliseconds in PIQoS. It is because PolicyCop reactively
restores the route, which involves communications between
data and control plane. Thus, we conclude that protection link
failure recovery at the data plane is useful to improve both the
delay and throughput to offer better QoS.

B. Intelligence of PIQoS

PIQoS proposes dynamic policy management using machine
learning. The PIQoS framework can significantly improve net-
work error detection and recovery and avoid time-consuming
and error-prone network diagnosis and policy management.
We propose two machine learning models to dynamically
detect error conditions and update policy accordingly.

Fig. 5. The accuracy of different supervised algorithms for error and policy
prediction models.

The error prediction model predicts whether there is any
error conditions in the observed data using predefined thresh-
olds. The error data is then sent to the policy prediction model
for root cause analysis, i.e., to identify the actual error and
its location. The automatic policy update module can use the
prediction outcome to update the associated policy. In the case
of a missing policy, a network manager can add one. In either
case, the errors and corresponding predictions are also sent to
the network manager as an alarm. This notification helps the
manager to identify any unusual error rates and the root cause
behind that errors.

We have chosen supervised learning to design both of our
models because of their accuracy. At first we have evaluated
different supervised machine learning algorithms to find the
best algorithm. In order to choose an appropriate supervised
algorithms, we have done an initial investigation on Naive
Bayes, Support Vector Machine (SVM), Random forests (RF)
and decision trees. The results are illustrated in Figure 5.

RF consists of several decision trees and offers good predic-
tion accuracy. However, this accuracy cannot be generalized
similar to decision trees. The accuracy of Naive Bayes and
SVM is similar; however, they tend to under-fit our models.
Among all the algorithms decision tree offers the best accuracy
for both the models. Furthermore, decision trees can analyze
a large volume of data using standard computing resources in
a reasonable time and are not sensitive to imbalanced data.

TABLE IV
THE ACCURACY OF DECISION TREE AND RANDOM FOREST

Classifier Error Prediction Policy Prediction
Decision Trees 0.9986013986 0.9967741935
RF(n=20) 0.9985915493 0.9870967742
RF(n=50) 0.9985915493 0.9903225806
RF(n=100) 0.9971929479 0.9903225806

Thus, we have chosen decision trees, in particular, the ID3
algorithm in our models. We have used other decision tree
algorithms like C4.5, where ID3 offers the best results. Also,
it is simple, accurate, and computationally efficient. The results
in Table IV furthermore illustrate that both of our proposed
models offer high accuracy.



Fig. 6. The accuracy of k-means clustering algorithm for error and policy
prediction models.

C. Comparison with Unsupervised Learning

We have observed that the accuracy of our models using
decision tree is quite impressive. However, supervised learning
algorithms require labeling training data, which may not be
feasible for large networks. Thus, we design a prediction
model using unsupervised machine learning algorithm. We
have first analyzed the performance of k-means and DBSCAN
algorithms to choose the best unsupervised algorithm. The
results in Figure 6 and Figure 7 illustrate that k-means offer
better accuracy compared to DBSCAN. In particular, the
DBSCAN algorithm is not suitable for high dimensional data
because of the curse of dimensionality problem. We have not
tested local outlier factor and auto-encoders, which is part of
our future work.

Fig. 7. The accuracy of DBSCAN algorithm for error and policy prediction
models.

In Figure 6, we observe that both of our models offer
their best accuracy for k=2 clusters. The cluster members
are nicely fit in their respective group when there are two
clusters, and the corresponding accuracy is around 50%. Thus,
the supervised decision tree algorithm offers significantly
higher accuracy compared to the unsupervised algorithms.
We conclude that there is a tradeoff between the prediction
accuracy and computation complexity of the learning models
if we consider supervised vs. unsupervised algorithms. In our
future work, we plan to explore semi-supervised algorithms to
balance between the accuracy and complexity.

VIII. CONCLUSIONS

At present, companies spend a significant amount of time
to diagnosis their network to detect and recover from various
error conditions that violate QoS and SLA. In this paper,

we have shown that using intelligent models in network
monitoring and management helps better QoS provisioning
and SLA. In particular, we have designed a programmable and
smart QoS framework called PIQoS. It first pushes link failure
recovery at the data plane to improve the delay and throughput.
Furthermore, the proposed framework offers two supervised
machine learning models for efficient network state diagnosis
and selecting corresponding management policies. We im-
plement and evaluate the proposed framework in a realistic
simulation environment and demonstrate that proposed models
can accurately predict link failure or network congestion and
let the system update management policy accordingly.
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