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Abstract—Software-Defined Networking (SDN) can help sim-
plify the management of today’s complex networks and data
centers. SDN provides a comprehensive view of the network, of-
fering flexibility and easing automation. In SDN, traffic manage-
ment functionality requires a high-performance and responsive
controller. In this paper, we conduct an experimental evaluation
of two open-source distributed OpenFlow controllers, namely
ONOS and OpenDaylight. Specifically, we construct a testbed
and use a standard benchmarking tool called Cbench to evaluate
their performance. We benchmark the throughput, latency, and
thread scalability of these two controllers in both physical and
virtualized (OpenStack) environments. The experimental results
show that ONOS provides higher throughput and lower latency
than OpenDaylight, which suffers from performance problems
on larger network models. Additional experiments demonstrate
the effects of thread placement on the performance of these two
controllers.

I. INTRODUCTION

The art of network design and operation has turned into a re-
markably complicated task. This is chiefly because of the rapid
development of modern technologies, ever-growing network
traffic, and increasing demands of dynamic applications from
the network. The emergence of Software-Defined Networking
(SDN) has revolutionized computer networking. In essence,
SDN improved flexibility, fostered innovation, and enhanced
scalability in network operation.

The controller is an integral part of software-defined net-
works. In such networks, the applications and services en-
force high-level policies on the underlying network via the
controller. Based on those policies, the controller handles each
type of traffic differently, by routing the traffic through certain
paths, etc. A plethora of controllers have been proposed. The
centralized controllers (e.g., NOX, Ryu, Floodlight, etc.) were
designed for early stages of SDN. Subsequently, distributed
controllers came into place to address the single-point-of-
failure issue and limited capacity of centralized controllers.
Among all open-source distributed controllers, ONOS (Open
Network Operating System) [1] and OpenDaylight [2] are
receiving significant attention since they are modular, support
numerous features (e.g., multi-vendor support, cluster config-
uration, high availability), and have a large technical commu-
nity. ONOS is supported by the Open Networking Foundation

(ONF) and Open Networking Lab (ON.Lab). OpenDaylight
is a large SDN open-source project supported by the Linux
Foundation, and has many industry partners and collaborators.

These two distributed controllers are the primary candidates
for deployment in enterprise-scale software-defined networks.
To the best of our knowledge, there is no recent study in the
literature focusing on the performance evaluation of ONOS
and OpenDaylight. ONOS and OpenDaylight have multiple
releases and are maturing in their development.

To better understand performance improvements (if any), it
is important to evaluate the latest releases of these controllers.
As such, the primary motivation of this work is to conduct
an experimental evaluation of ONOS (Goldeneye version)
and OpenDaylight (Beryllium-SR2 version). The second mo-
tivation of this study is to answer the following question:
how well do ONOS and OpenDaylight perform in virtualized
environments? In today’s IT world, enterprises often virtualize
their infrastructure. Thus, understanding the performance of
these controllers in a virtualized environment is quite timely
and useful. Also, in this paper, we answer to a research
question regarding memory management and CPU utilization
of OpenDaylight.

The remainder of this paper is structured as follows. Sec-
tion II reviews prior related work on performance evaluation of
OpenFlow controllers. Section III describes our methodology
and testbed. Section IV presents the baseline results from
our experiments. Section V provides supplementary results
exploring three performance issues in more detail. Finally,
Section VI concludes the paper.

II. RELATED WORK

In the past few years, there have been numerous studies
focusing on the performance of OpenFlow controllers. The
majority of these presented benchmarking studies of some
well-known controllers (e.g., Beacon, Maestro, NOX). These
studies were designed to identify the baseline performance
of controllers, and determine which controller outperforms
the others in certain tests. On the other hand, some other
studies proposed new controllers with advantages over other
controllers regarding throughput and latency.

Tootoonchian et al. [5] evaluated the performance of several
OpenFlow controllers. The authors presented NOX-MT, a978-1-5090-6501-1/17/$31.00 c© 2017 IEEE
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multi-threaded version of NOX controller, and designed a
benchmarking tool called Cbench. Cbench enables researchers
to assess the throughput and latency of OpenFlow controllers
by emulating a network topology of OpenFlow switches.

A preliminary study of the OpenDaylight controller is con-
ducted using Cbench in [9]. The performance of OpenDaylight
is compared with Floodlight. The authors noticed that Open-
Daylight has unexpectedly poor performance in throughput
and latency tests compared to Floodlight. They speculated
that this could be due to a memory leak in the OpenDaylight
controller. In Section V, we show that OpenDaylight does not
suffer from a memory leak. Rather, it has excessively high
CPU utilization that degrades the performance of OpenDay-
light.

Salman et al. [10] studied the performance of well-known
centralized and distributed OpenFlow controllers. The results
of their experiments indicate that controllers written in C (e.g.,
MUL and Libfluid MSG) have the highest throughput. Next
best were Java-based controllers, such as Beacon, IRIS, and
Maestro, which demonstrated higher throughput compared to
other controllers. They mentioned that controllers coded in
C and Java could use many threads, whereas Python-based
controllers do not show better performance when increasing
the number of threads.

III. METHODOLOGY AND EXPERIMENT SETUP

Our methodology studies performance and thread scalabil-
ity. In this work, we quantify the performance of ONOS [1]
and OpenDaylight [2] with Cbench [11]. Our experimental
evaluation examines the performance of single-node ONOS
and OpenDaylight controllers. Understanding the performance
of a single-node is useful since it provides a baseline to
compare ONOS and OpenDaylight with each other, and to
other OpenFlow controllers.

We conducted our experiments on stand-alone ONOS and
OpenDaylight in three phases namely physical server (bare-
metal) without Hyper-Threading, physical server with HT, and
virtual host.

A. Testbed Setup

The testbed consists of three Cisco UCS C240 M4SX
rackmounted servers. Each server is equipped with two Intel
Xeon E5-2670 CPUs (24 cores @ 2.30 GHz), 256 GB RAM,
4 TB hard drive, and two NICs1 (1 Gbps and 10 Gbps). All
servers run Ubuntu 14.04.4 LTS x64 operating system. The
servers connect through a Cisco UCS 6248 Fabric Interconnect
that operates in Ethernet Switching mode.

The experiments on the physical host use two servers.
One server is used to run Cbench, and the second server is
used to run the controllers (one controller at a time). On the
other hand, for experiments on the virtual host, we deploy
OpenStack Kilo version on three servers. One server has the

1The 10 Gbps NIC is used for network traffic, and 1 Gbps NIC is used for
out-of-band management. We separate the network traffic from management
traffic in our testbed.

role of OpenStack controller, and the other two servers are
compute nodes.

We run controllers and Cbench in separate VMs on separate
compute nodes for consistency with settings on the physical
host. We set the overcommit ratio to 1 in the Nova configu-
ration, so that there is a direct one-to-one mapping between
virtual CPUs (vCPU) and physical CPUs (pCPU). Similarly,
1 GB RAM of each VM corresponds to 1 GB RAM on the
bare-metal host. For the controller VM, we use 16 vCPUs and
16 GB of memory for running the controller. The remaining
4 vCPUs and 4 GB memory are used to run the operating
system.

Each server has 24 cores, divided evenly across 2 CPU
sockets. Without Hyper-Threading, each processor has 12
threads. Threads 0-11 reside on socket 1, and threads 12-
23 reside on socket 2. With Hyper-Threading, each processor
socket has 24 threads, and there are 48 threads in total. Threads
0-11 and 24-35 reside on socket 1, while threads 12-23 and
36-47 reside on socket 2.

IV. BASELINE RESULTS

A. Throughput Results

Figure 1 and Figure 2 present the average throughput results
for ONOS and OpenDaylight, respectively.

Figure 1 shows that the throughput for ONOS scales well
up to 16 switches, and then reaches a saturation plateau at
about 1.4 million responses/sec. The performance is similar
whether Hyper-Threading is on or off. On the virtual host,
ONOS’s throughput is roughly 13.5% lower than on the
physical host. This performance gap indicates the impact
of virtualization overhead on ONOS’s throughput. With one
switch, ONOS delivers 100K responses/sec on the virtual host.
As the number of switches is increased, the throughput trends
for the physical and virtual hosts are similar, which indicates
that ONOS behaves consistently regardless of the underlying
infrastructure.

In our experiment, the throughput of ONOS increases until
the number of switches reaches the number of threads used
to run the controller (16 threads). This trend matches the
behavior of other multi-threaded controllers that have been
studied in the past. As mentioned in an earlier benchmarking
study [8] for multi-threaded controllers, having more con-
nected switches typically leads to better utilization of CPU
threads, until the number of switches exceeds the number of
available threads.

The performance of OpenDaylight in Figure 2 is dramat-
ically different (note the lower vertical scale on the graph).
OpenDaylight’s highest throughput is achieved with 8 con-
nected switches, and there is a drastic throughput reduction as
the number of switches is increased beyond 8. For OpenDay-
light, the throughput with and without HT differ. It has higher
throughput on the physical host when Hyper-Threading is
enabled. OpenDaylight’s throughput on the virtual host is only
slightly lower than its throughput on the physical host with
HT. Similar to the physical host, this performance degrades
beyond 8 switches. This behavior of OpenDaylight has been
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Fig. 1: ONOS throughput vs number of switches

Fig. 2: OpenDaylight throughput vs number of switches

mentioned in the literature [9]. We observed some throughput
test failures with 256 and 512 switches. Even though we
managed to have some successful tests with 512 switches,
OpenDaylight responded with zero in many of our tests. We
discarded the failed tests and calculated the average throughput
and overall standard deviation based on the successful tests.

B. Latency Results

Figure 3 and Figure 4 depict the average flow setup latency
of ONOS and OpenDaylight, respectively. Both controllers
demonstrate structurally similar trends in this test. They have
better performance with HT enabled on the physical host,
whereas the performance degrades on the virtual host. How-
ever, the flow setup latency decreases with the increasing
number of connected switches.

Note that the latency metric, as directly reported by Cbench,
is basically the inverse of the throughput metric. In the latency
test, each emulated switch in Cbench sends a packet in mes-
sage to the controller, and waits to receive the packet out mes-
sage (response from controller). Cbench measures the delay
between the packet in message and the packet out message to
calculate flow setup latency of the controller. By increasing the
number of switches, the rate of packet in messages in Cbench
increases. As a result, the controller receives more packet in
messages, which are then processed in parallel. This results
in receiving more packet out messages from the controller in

the given time, and subsequently decreases flow setup latency.
This reflects the Task Batching model implemented in each
controller. Task Batching is a method used in multi-threaded
controllers to allocate already received packet in messages to
the worker threads for processing. Task Batching is one of
the key features in multi-threaded controllers that impacts the
latency [12].

Fig. 3: ONOS flow setup latency vs number of switches

Fig. 4: OpenDaylight flow setup latency vs number of switches

It is worth noting that Cbench only establishes one TCP
connection to the controller for all emulated switches. Thus,
it gathers aggregated statistics for all switches, but not for
each switch individually [13]. As a result, it is not possible
to have a finer-grain analysis (e.g., determine per-switch
latency or fairness). The observed trend in the latency test,
for both ONOS and OpenDaylight, matches the behavior
of other multi-threaded controllers that have been studied
previously [9] [10] [14].

C. Thread Scalability Results

Figures 5 and 6 illustrate the average throughput of ONOS
and OpenDaylight with different numbers of threads. Both
controllers exhibit a similar trend in this test, which uses
16 emulated switches. Throughput increases steadily at first,
before reaching a plateau for 12-16 threads.

These results illustrate good multi-threading capabilities.
Unlike the majority of SDN controllers, ONOS and OpenDay-



light are not limited to 8 threads [15], [16], [8], and perform
well with up to 16 threads.

ONOS’s throughput is similar on the physical host with and
without HT. The throughput is slightly better with 6-10 threads
on the physical host without HT. Similar to the throughput
results with HT, there is a decline in throughput with 12-
15 threads. The throughput on the virtual host is lower than
that on the physical host, which does not decline with 12-15
threads.

Fig. 5: ONOS throughput vs number of threads

We observed that the ONOS throughput decreased slightly
after 12 threads (between 12-15 threads). This trend reflects
the communication delay between threads on separate CPU
sockets. Recall that the server used to run the controllers has
48 threads (with HT), and 2 CPU sockets. Each processor
socket has 24 threads. Threads 0-11 and 24-35 reside on socket
1, and threads 12-23 and 36-47 reside on socket 2. We used
the isolcpus and taskset commands to isolate and bind
the desired number of threads to controllers. We isolated and
pinned the first 16 threads to each controller at run time.
Hence, the first 12 threads (thread 0-11) reside on processor
socket 1, and threads 12-15 reside on processor socket 2. Cores
(threads) on the same socket typically share L2 and L3 caches,
whereas cores on different sockets usually communicate via
memory or use a cache coherency protocol forcache-to-cache
communications. The additional overhead for this coordination
affects the achievable throughput.

The average throughput on the virtual host doesn’t show
the dip between 12-16 threads, since the CPU allocation to
the virtual machine (pinning guest vCPUs to host pCPUs) is
automatically handled by the libvirt driver in OpenStack
Nova. Since the guest operating system (virtual machine) only
sees one processor socket, all 16 threads are on the same
socket. Hence, further increasing the number of threads could
result in better performance on the virtual host compared to
the physical machine.

Figure 6 shows the corresponding results for OpenDay-
light. The throughput increases with the increasing number
of threads. The throughput without HT is lower than that of
with HT. The throughput on the virtual host is similar to the
results on the physical host with HT.

Fig. 6: OpenDaylight throughput vs number of threads

As shown in Figure 6, OpenDaylight’s responses in this
test show large standard deviations. First of all, it should be
pointed out that in all throughput tests, OpenDaylight showed
higher standard deviation in its responses compared to ONOS.
However, in this experiment, we observed even larger standard
deviations, especially when OpenDaylight runs with fewer
than 16 threads. We speculate that this may reflect an issue
in OpenDaylight’s OpenFlow plugin, which fails to process
packet in messages in a consistent manner.
Summary: In the throughput test, ONOS dramatically outper-
forms OpenDaylight. ONOS shows very stable performance,
and about 10 times better overall throughput (for 32 switches)
than OpenDaylight. The average flow setup latency of ONOS
is about half of OpenDaylight’s latency. Compared to prior
works with earlier versions of these two controllers, ONOS
latency has improved by 50%, while OpenDaylight latency is
about the same.

V. SUPPLEMENTARY RESULTS

A. Memory Usage Results

In the discussion section of [9], the authors speculated that
OpenDaylight might have a memory leak, which could be
the reason for its poor performance in the throughput test.
We investigated this issue further, and managed to show that
OpenDaylight’s memory management is normal, and it doesn’t
have a memory leak.

To explore this issue, we used YourKit (version 2016.02-
b46), one of the most recognized profiling tools for CPU
and memory profiling, to scrutinize OpenDaylight memory
usage under test load. To capture memory usage statistics of
controllers, we used a remote profiling approach.

Figure 7a and Figure 7b present our experimental results
on memory usage. Figure 7a presents OpenDaylight’s Heap
memory usage before and during the throughput test. Figure 7b
shows Heap memory usage after test and full garbage collec-
tion. We conducted the memory profiling on a fresh install
of OpenDaylight, and ran OpenDaylight with 16 threads for
this test. We assigned 16 GB of memory to the controller.
Following the recommended Java settings for OpenDaylight,
we set equal values for the minimum and maximum Heap size
(16 GB).
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(a) OpenDaylight’s memory usage (before and during test)

(b) OpenDaylight’s memory usage (after test and full GC)

Fig. 7: OpenDaylight Heap memory usage under throughput
test

The throughput test ran for about 125 seconds. In Figure 7a,
the green arrow indicates the start of the test. The memory
usage growth is normal as OpenDaylight allocates objects for
its data. The spikes in the blue area show that the Eden space is
almost full. The Eden space usage at most of the spikes is near
5.0 GB. As shown in Figures 7a and 7b, when the Eden space
fills, a minor GC occurs. In Figure 7b, the red arrow indicates
the end of the throughput test. After that point, the memory is
still occupied, which is normal since the Eden space is only
partially filled. Hence, no minor GC is triggered.

As shown in Figure 7b, we explicitly forced a full garbage
collection (the blue arrow) to reclaim the memory. After full
GC, the Eden space and both Survivor spaces became empty.
After 10 minor GCs during the throughput test, the usage of
old generation is 180 MB, which is very low compared to
its limit (10.2 GB). There is no evidence of a memory leak
here. In programs with a memory leak, the old generation gets
full quite fast, and even with a full GC, the old generation is
ever-growing.

B. CPU Utilization

While investigating the memory usage of controllers, we
noticed that OpenDaylight’s CPU usage was extremely high
compared to ONOS. This behavior motivated some additional
follow-up tests on both controllers to understand and compare
their CPU utilization under throughput test. We used 16
threads to run each controller. Hence, the graphs present total
CPU utilization of controllers in each test with 16 threads.
Each CPU usage result shows the average from three runs.

ONOS’s CPU utilization is less than 10% for one switch,
and never exceeds 80%, even for 32 switches. Conversely,
OpenDaylight’s CPU utilization is about 35% for one switch,
and exceeds 96% for 16 switches or more.

As shown in Figure 8, OpenDaylight saturates the CPU.
The total CPU usage of OpenDaylight clearly indicates that

the main reason behind its poor performance in the throughput
test is a CPU-related problem rather than memory leakage.

Fig. 8: CPU utilization during throughput test

Considering that ONOS and OpenDaylight are both Java-
based controllers (same programming language), and use iden-
tical NIO libraries (Netty), they should have similar perfor-
mance. However, OpenDaylight’s surprisingly high CPU uti-
lization, even with one connected switch, suggests a possible
bug in OpenDaylight’s OpenFlow plugin. Moreover, since the
issue is exacerbated by an increase in the number of switches,
it is likely that either the Switch Partitioning algorithm or the
Packet Batching (packet-in scheduling) method are the prob-
lem. They do not seem well optimized, which severely affects
the controller’s CPU utilization and reduces the throughput.

C. Thread Placement

In Section IV-C, we observed a slight decline in throughput
with 12-15 threads. We explained the trend and its cause. How-
ever, we conducted two follow-up experiments with threads on
one processor socket to discover the thread scalability of the
controllers without the overhead of inter-socket communica-
tion.

Figures 9 and 10 present the average throughput of ONOS
and OpenDaylight with different numbers of threads. The
yellow line in each graph shows the throughput results with
threads on two processor sockets. The purple line illustrates
the average throughput with threads on one socket.

On each graph, the throughputs for each configuration are
identical up to 12 threads, regardless of whether they are
deployed on the same or different sockets. Beyond this point,
however, the results diverge. Both controllers show a higher
throughput when all threads are on one socket, compared to
their performance with threads on two sockets. Also, with
threads on one socket, we do not observe the throughput
decline in threads 13-15.

Both controllers have similar performance trends in this ex-
periment, except for OpenDaylight’s higher standard deviation
compared to ONOS. This fact may arise from OpenDaylight’s
high CPU utilization.
Summary: Our additional experiments have confirmed that

the memory utilization of the OpenDaylight controller is
normal. The lower throughput of OpenDaylight is attributable



Fig. 9: ONOS throughput vs number of threads (1 socket vs
2 sockets)

Fig. 10: OpenDaylight throughput vs number of threads (1
socket vs 2 sockets)

to its high CPU utilization. We suspect that this may happen
from the Switch Partitioning algorithm or the Packet Batching.
As part of our future research, we plan to investigate this issue
further. Finally, we observe that better throughput could be
achieved by deploying threads on a single CPU socket.

VI. CONCLUSION

In this study, we showed that the performance of an Open-
Flow controller depends on many different factors: controller
configuration, underlying network infrastructure, the number
of switches, the number of threads, and the placement of
threads across sockets. Our experimental evaluation of ONOS
and OpenDaylight shows that enabling Hyper-threading results
in performance improvement for both controllers. Overall,
in most of the tests, ONOS and OpenDaylight show higher
throughput and lower latency when Hyper-threading is en-
abled.

Our study showed that the performance of ONOS and
OpenDaylight differ on the virtual host. ONOS’s throughput
on the virtual host is about 13.5% lower than its throughput
on the physical host. On the other hand, OpenDaylight’s
throughput on the virtual host is similar to its throughput on
the physical host. Both controllers had flow setup latency on

the virtual host that was two times higher than on the physical
host.

Our experimental evaluation of ONOS and OpenDaylight
indicates that ONOS outperforms OpenDaylight for through-
put and latency. Overall, ONOS shows more scalable and
robust performance than OpenDaylight. OpenDaylight’s be-
havior in throughput tests suggests a possible bug in its
OpenFlow plugin.
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