CSCI 1106
Lecture 16

Dealing with Failure
Announcements

• Today’s Topics
 – Dealing with Failure
 – Failure and Failure Causes
 – Failure Identification
 – Failure Detection
 – Failure Recovery
Motivation

• The world is imperfect
 – Sensors give wrong readings
 – Motors turn too fast, too slow, too much, or too little
 – Wheels don’t grip the surface properly
 – Lighting conditions change
 – Profs and TAs get in the way...

• This is normal
 – Humans deal with these kinds of problems all the time
 – We learn how to deal with failure

• How do we get robots to deal with them as well?
Dealing with Failure

• Need to do two things
 – Identify when a failure has occurred
 – Respond to the failure

• Example: Missing your exit on the highway
 – Identify that you have gone too far
 – Turn around and back track
Failure and Failure Cause

• *Failure* is a state that the system should not be in under normal conditions
• *Failure cause* is the physical or functional reason for the failure
 – I.e., Why did failure occur?
 – Also known as *failure mode*
• Examples:
 – The furnace stopped working because it ran out of oil
 – We missed the exit because we did not see the sign
 – The robot missed the line because it drove over it too quickly
• Key Observation:
 – We can only deal with failures that we can foresee
 – I.e., What can go wrong?
Failure Manifestation

• *Failure manifestation* is the detectable effect of the failure

• Examples:
 – The house is cold because the furnace is not working
 – We have driven too long because we missed the exit
 – Our arm hurts because we have broken it

• Key Idea: To identify failure, it must manifest itself in a detectable way
Failure Identification

• Idea: We can identify that a failure has occurred from its manifestation

• E.g., We identify that
 – The furnace must not be working because the house is cold
 – We must have missed the exit because we have driven too long
 – Our arm must be broken because it really hurts

• To identify a failure, we need to
 – Determine what can cause the failure
 – How the failure manifests
Enumerating Failures

• When designing a program we need to (attempt) to enumerate all relevant failures:
 – Assume things will go wrong
 – Ask “What can go wrong?”
 – Ask “How is failure manifested?”

• Narrow the enumeration to:
 – Failures we can deal with
 – Failure causes we understand
 – Failure manifestations we can identify

• Systems fail because designers fail to identify all relevant failure causes
Examples of Failures and Causes

• Ground proximity sensor fails to register dark / light
 – Sensor’s distance to ground changed
• Horizontal proximity sensor fails to register object
 – Object has an odd shape
 – Object has an odd surface
• Horizontal proximity sensor registers ghost objects
 – Other robots nearby emitting infra-red light
• Robot does not make sufficiently precise movement
 – Tires are not properly aligned
 – Motors are rotating too fast

• In all cases the sensor or actuator may be broken
• How do we detect failures?
Mechanisms for Detecting Failure

- Unexpected external events
 - Sensors register an unexpected changes in environment
 - Sensors give false readings
 - Sensors give true readings of unexpected conditions
 - Actuators report status errors
 - Actuator fails to perform specified task
 - Actuator reports error where none has occurred

- Lack of expected external events
 - A timer expired while waiting for an expected event
 - Sensor fails to register the expected event
 - Expected event does not occur
 - Actuators fail to move the prescribed amount
 - Encounter unexpected resistance

- Unexpected (or lack there of) internal events
 - Programs run code they are not supposed to (bugs)

→ Unexpected: A difference between the anticipated and measured
Failure Response

• Once we determine that a failure has occurred, we need to respond to it
• *Response mechanisms* are parts of the program that respond to the failure
• One approach is to put system in safe state and shut down
 – E.g., nuclear reactors
• This is not always possible if
 – System is inaccessible
 • E.g., rovers on Mars
 – System is mission critical
 • E.g., airplane
• In these cases the system must *recover* from the failures
Failure Recovery

• Recall: A failure occurs when a system enters an unexpected state
• A *recovery mechanism* returns the system to a normal state
• Recovery mechanisms are specific to each failure
• Examples:
 – If an exit is missed, backtrack to the exit
 – If the furnace is broken, call landlord
 – If your arm is broken, see a doctor
• For our purposes: return the robot to its last "normal" state means
 – Find the line if it is lost
 – Recheck sensors
 – Retry actuator operation

• If the recovery mechanism fails, we need a recovery mechanism for the recovery mechanism...
Modeling Failure Identification and Recovery

• We need to model or represent how we
 – Identify failure
 – Respond to failure
 – Recover from failure

• What should we use?
State Transition Diagrams

• Idea: Use state transition diagrams to represent possible failures and recovery mechanisms
• Example: Crossing the Street
A Missed Line in Follow the Line

• **Right state**
 – Sensor reports light
 – On left side of line
 – Moving to the right
 – Timer running

• **Left state**
 – Sensor reports dark
 – On the line
 – Moving to the left

• **Lost state**
 – Sensor reports light
 – On right side of the line
 – Moving to the left
 – Timer expired

• **Found state**
 – Sensor reports dark
 – On the line
 – Moving left
Observations

• Error identification and response can add much more complexity to your program
 – 80% of a typical application deals with error handling

• The error response itself may fail

• State transition diagrams are an easy way to reason about errors