CSCI 1106
Lecture 11

Threads, Interference, and Other Topics

Announcements

• Today’s Topics
 – Threads and Interference
 – Dealing with Interference
 – A home-made Wait block
 – Sensor blocks
 – Multiconditional Wait blocks
 – Project report reminder
The Multithreaded Approach

Interfering Threads

- Question: What happens if multiple threads try to control the motors at the same time?
- *Interference* occurs when a thread violates another thread’s assumptions
 - E.g., Only it has control of the motors
- Or *interference* occurs when interaction between threads causes a program to misbehave
- Question: How do we prevent this?
Preventing Interference

• Only one thread controls a given actuator
 – I.e., only one thread may control the motors
• Threads must coordinate their behaviours
 – E.g., both threads may control the motors but not at the same time
• How do threads coordinate?

Coordinating with Variables

• Recall:
 – Variables are used to store program state
 • Numbers, text, logical values
 – Variables are visible by all threads
• Idea:
 – Use a logical variable to indicate when it is safe to manipulate the motors
 • Create a logical variable called busy
 • If busy is true, the motors are being used by another thread
 • If busy is false, it is safe to access the motors
 – The hard part is figuring out how to do this
A Solution to Interference

Example of a home-made Wait block!

A Home-Made Wait Block
Why Do We Need Sensor Blocks?

• View the measurements that a sensor is reporting when debugging a program
• Keep track of previous measurements to compare against future measurements
 — E.g., Finding a minimum/maximum measurement
• Create multiconditional Wait blocks

Multiconditional Wait Blocks

• A Wait block polls a sensor until a threshold is reached

 - Below threshold
 - Threshold

 A sensor is

 Polling

• Idea: Combine measurements from multiple sensors

 - A sensor is below threshold
 - All sensors are above threshold

 A sensor is

 Polling

 - Below threshold
 - Above threshold
A Multiconditional Wait Block

More Than Sensors

- Idea: Can use more than sensors in such a construct
 - Variables
 - Timers
 - Rotation sensors

- Question: How would this construct change if you wanted to break out of the loop if *either* of the sensors is above threshold?
Another Multiconditional Wait Block

Project Report Reminder

- Report is aimed at peers, TAs, & instructor
- Please use the provided template
- Due Monday, October 22, 8:35am (in class)
- One submission per group
- The report **must** be submitted in
 - Hard (paper) copy (in class)
 - Soft (electronic) copy on the moodle site
- Grade rubric available in project specification
- **No late submissions**