CSCI 1106
Lecture 5
State Transition Diagrams

Announcements

• Quiz #1 is this Friday, January 25, in class
• Today’s Topics
 – Modeling Tasks
 – States and Transitions
 – State Transition Diagrams
 – Examples
Crossing at an Intersection

• If light is red, wait for light to turn green
• If light is yellow, wait for light to turn green
• If light is green but there is not enough time, wait for light to turn red and then green
• If light is green and there is enough time,
 – Proceed on crosswalk
 – If a car is speeding at you, get out of the way
• Stop crossing when other side is reached

Observations

• Even simple tasks are hard to specify
 – What are the steps?
 – When are the steps to be done?
 – Which steps need to be done?
• Specifying computer tasks is even harder
• Need a simple way to specify and model
 – Steps of a task
 – Conditions under which the steps are performed
 – Environment of the robot during the task
• Idea: Use state transition diagrams
State

- A state is a unique set of conditions that hold at a given time
- Conditions include:
 - Measured or sensed properties of the environment
 - E.g., light is green and there is 20 seconds to cross
 - Current behaviour
 - E.g., Crossing the street
 - Current expectations
 - E.g., Will reach the other side without being run over
- Key Idea: A robot can be in one state at a time
- Robots can transition from one state to another state

State Transitions

- A state transition occurs when
 - An event occurs
 - One of the conditions describing the state changes
 - The state of the robot changes
- Transitions are typically caused by
 - External events
 - E.g. The stoplight changing colour
 - Completion of a step in a task (internal event)
 - E.g. Completion of crossing the street
State Transition Diagrams

• Idea: We use a state transition diagram to model a task
• States are represented by circles
• Arrows represent transitions between states

Creating State Transition Diagrams

• Identify the states (conditions) of a task
 – Determine what actions must be performed
 – Determine groups of unique (relevant) conditions
 – Label each group with a unique name
• Identify state to state transitions
 – What is being sensed?
 – What external events will be sensed?
 – What internal events will occur?
 – What conditions will these events change?
 – Determine which conditions change?
 – Determine the corresponding states in the transition
 – Label each transition with a unique label
• Create diagram
 – Combine states and transitions
 – Refine the diagram by repeating the process
• This diagram is a blueprint for your program!
Determine if Number of People is Even

- Idea
 - Don’t want to count people
 - Just keep track if # of people is odd or even
- States: (2)
 - Even
 - Odd
- Transitions:
 - Each additional person causes a transition to the other state

Determine if Number of People is Divisible by 3

- Idea
 - Don’t want to count people
 - Just keep track if # of people is divisible by 3
- States: (?)
- Transitions:
 - Each additional person causes a transition
Move in a Square

• Idea
 – Two actions
 • Move forward
 • Turn right
 – Two events
 • Finish straight move
 • Finish right turn

• States: (2)
 – Forward
 – Turn

• Transitions:
 – When an action completes

Make One Square

• Idea
 – Two actions
 • Move forward
 • Turn right
 • Repeated 4 times
 – Two events
 • Finish straight move
 • Finish right turn

• States: (?)
 – Forward?
 – Turn?

• Transitions:
 – When an action completes
Avoid the Boundary

- **Idea**
 - Two actions
 - Move forward
 - Back off
 - Two events
 - Black line sensed
 - Finish back-off
- **States:** (2)
 - Forward
 - Back-off
- **Transitions:**
 - Line sensed
 - Back-off done

Follow the Line

- **Setup**
 - Actions?
 - Events?
- **States:** (?)
- **Transitions:** ?
Outlook

Preti Nets (multiple simultaneous states)

Bayes Nets (stochastic nets)